RAPID COMMUNICATIONS

PHYSICAL REVIEW A

VOLUME 47, NUMBER 4

APRIL 1993

Chaotic and cooperative regimes for the micromaser

R. Bonifacio
Dipartimento di Fisica, via Celoria 16, 20133 Milano, Italy

G. M. D’Ariano and R. Seno
Dipartimento di Fisica “A. Volta,” via Bassi 6, 27100 Pavia, Italy

N. Sterpi

Maz-Planck-Institut fir Quantenoptik, 8046 Garching, Germany
(Received 17 December 1992)

We describe the micromaser in the framework of an exact semiclassical model for regular injection,
allowing the case of more than one atom at a time in the cavity to be considered. For high pumping
and high atom fluxes we find a new kind of phase transition corresponding to a strongly nonlinear
chaotic behavior. In addition to the customary period-doubling route to chaos, unexpected scenarios
are exhibited, which are a consequence of the multistable competition between different attractors

for time evolution.
PACS number(s): 42.52.4+x, 05.45.4+b

Besides providing the simplest concrete physical sys-
tem to test the quantum nature of radiation interacting
with matter, the micromaser is also attractive as a toy
model for investigations on chaotic behavior, both clas-
sically and quantum mechanically [1, 2]. Actually, what
makes the micromaser interesting is the fact that the ex-
perimental parameters are under good control, and the
atom-field interaction time and cavity damping rate can
be varied almost at will at extremely low values.

The micromaser has been studied extensively for very
low fluxes of atoms, with average time spacing between
two consecutive atoms much greater than the flying time
in the cavity (7o > Tint), in order to guarantee that there
is no more than one atom at a time [3-5]. Such restriction
to low atomic fluxes, along with the possibility of neglect-
ing the field decay during the interaction with the atom,
allows microscopic quantum-mechanical evaluations. On
the other hand, there is no simple theoretical approach
for the case of high fluxes, because of the intrinsic diffi-
culty of either treating the atom-atom quantum correla-
tions and/or separating the loss from the gain parts of
the density-matrix evolution.

The case of many atoms simultaneously crossing the
cavity should be particularly interesting, due to the pos-
sibility of cooperative mechanisms. Actually, in order
to observe cooperative effects, it is not strictly necessary
to have many atoms. In fact, the usual phase transi-
tions predicted by quantum theory become sharper for
larger Noy—the number of excited atoms crossing the
cavity during the photon lifetime. However, for fixed
Nex the dynamics should be different when high fluxes
are considered—namely, 70 ~ Tint—as opposed to the
extreme case 7o > Tint- As is shown in the following,
in the high-flux regime new types of “phase transitions”
arise for very large values of the pumping parameter 6
(see the following for a definition). It should be stressed
that in this regime the quantum nature of the system is
not so relevant for dynamics as in the case of low fluxes,
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and a simple semiclassical approach is itself of interest,
at least for sufficiently high photon numbers and not too
long evolution times [6].

In this paper numerical results are presented, based
on an exact semiclassical model for regular injection, in-
cluding the case of more than one atom in the cavity at
a time. In this sense the present model differs from those
in Refs. [1, 2], where the limit 79 > Tin; describes an al-
most always empty cavity, with atoms injected at very
low rates; hence, coherence and cooperative effects be-
tween atoms are totally neglected, whereas they are the
main concern of this paper, since we allow at least one
atom in the cavity at every time.

Let us briefly summarize the derivation of the model.
A monoenergetic beam of two-level atoms crosses a cavity
with transit time 7, all the atoms being injected in
the excited state. The Hamiltonian is the usual electric-
dipole interaction for atoms resonating with one mode of
the cavity in the rotating-wave approximation
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where x;(t) is the characteristic function on the time in-
terval [t;,t; + Tint] for the jth atom entering the cavity at
t = t;. From the Hamiltonian (1) one gets the Heisenberg
equations in the interaction picture
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Cavity losses have to be considered upon introducing a
suitable Liouvillian operator in addition to the Hamil-
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tonian (1). In this way the Heisenberg equations take
the form of Langevin equations for operators, with a
damping term —(k/2)éa(t) plus a zero average noise oper-
ator to be included on the right-hand side of the first of
Egs. (2). The semiclassical limit is obtained by replacing
all operators with their expectation values a(t) = (a(t)),
ol (t) = (62.(t)), o3(t) = (65(t)), and consistently drop-
ping the noise term

dC;(tt) — ____';Ea(t) —_ zggo Xj (t)a'J_ (t) )

do? (t)
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Since the atoms are injected in the excited state, namely,
ol (t;) = 0 and o}(t;) = 1, from Egs.(3) one has

oo t
i%gﬂ = —ga(t) + ‘g-j;Xj(t) sin [/t du2ga(u)] G

In a more transparent notation, upon introducing the
Bloch rotation angles

t
@i (t) E/ du2ga(u) , (5)

tj
and the dimensionless time ¢’ = t/7y, 70 being the

time spacing between two consecutive regularly injected
atoms, the integro-differential equation (4) is replaced by
the following system of differential equations:

dz(t’ 1, 02 )
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a®((j +1)70) — a®(j7o) + 3{cos $[(j + 1)70 — €] — cos p(j70)} = —/

Using the “periodic kick” boundaries ¢(j79) = 0 and the
stationary condition a?((j + 1)70) = a?(j70), we obtain

sinZ —mz?2 =0, (13)
where f denotes the time average of f over 7p. In terms
of the relative fluctuations 02 = Ax2/z2, Eq. (13) is

rewritten as follows:
sin?z —mz?(1+0%) =0. (14)

Upon neglecting fluctuations 02 Eq. (14) becomes the
usual steady-state equation, which gives the fixed points
of the evolution. This analysis can be extended to the
N > 1 atom case, leading to the simple generalization [7]
sin?(Z)

N —mZ=0. (15)

Among the fixed points that are roots of Eq. (15),
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In Egs. (6) and (7) N = 7iy4/70 denotes the number of
atoms simultaneously present in the cavity during the
flying time 7iny (for N = 1 one always has one atom in
the cavity, namely, a new atom is injected exactly when
the previous one leaves the cavity). We also introduced
the rescaled field

z(t') = grima(t’) (8)
and the parameters
1
Nex = 76‘— , 0 = gTint V/ Nex - (9)
To

The system depends on the set of parameters {IN, Nex, 6},
where Ngy represents the number of atoms crossing the
cavity during the photon lifetime k=1 and 6 is the pump-
ing parameter. In the NV = 1 case Eqgs. (6) and (7) are
equivalent to the equation of a damped kicked pendulum
of mass m = k/(g%Tint)
2
mg—(é + ¢ _ 1
dt’?2 2Ny dt!  Nex
where ¢(t) = ¢;(t) for t’ € [j,j + 1) and at each “ kick”
occurring at t' = j = 0,1, ... the Bloch angle is set equal
to zero, whereas the angular velocity d¢/dt’ is continu-
ous.

In the following we focus attention only on the dynam-
ics of the field, and consider the evolution at the “stro-
boscopic” times ¢t = n7ine, with n integer, averaging the
field on each period 7int. Equations (4) and (5) in the
one-atom case (7o = Tint) lead to the following energy
balance for t € [j7o,(j + 1)70 — €):

sing =0, (10)

% ( 2+ %cos ¢j(t)) = —ka? . (11)

Integrating in the interval [j7o,(j + 1)70 — €] between
stroboscopic times t = j19, we get

G+1)70
ka?dt . (12)

JTo

[
those with positive derivative of sin? z are uncondition-
ally unstable, whereas the others are conditionally stable,
namely their stability depends on the values of the set of
parameters {N, Nex,0}. Typically, one has that for in-
creasing 0, fixed N, Ny, and initial field xo, the fixed
point becomes unstable and is replaced by a period-2 at-
tractor; then it is followed by a period-doubling route to
chaos. However, changing the values of the parameters
N, Nex and the initial condition xg, situations different
from the customary period doubling can occur; we also
find the following scenarios: (i) the fixed point evolves
towards a quasiperiodic orbit; (ii) the long-time solution
jumps between chaotic orbits; (iii) a fixed point jumps to
a different fixed point; (iv) a period-2 jumps to a differ-
ent period-2. All of these mechanisms are a consequence
of the fact that the basins of attraction are very sensitive
to the value of @ itself.

In Fig. 1 an example of period doubling is presented



RAPID COMMUNICATIONS

R2466 R. BONIFACIO, G. M. D’ARIANO, R. SENO, AND N. STERPI 47

@

g % T T T T T T
©
o F
Ire}
<

% 0 x I

3 i ©
)
05 -
[Te 2 N
(200

o re)

lo 1

6
6
FIG. 1. Onset of chaos for N = 1, Nex = 50, and initial

field zo = 58. The last 100 stroboscopic points of the time
evolution of Z after a transient t; = 200 are plotted for each
value of the pumping parameter 6.

for N =1, Nex = 50, and o9 = 58. The plot is obtained
upon fixing € and evaluating the evolution of the average
field T after a transient ¢t = 200; then the subsequent
stroboscopic 100 values of T are plotted on the vertical
axis corresponding to the chosen 8. The plot shows a
typical Feigenbaum-like [8] sequence, with the first oc-
currences of bifurcation at § ~ 116 and the onset of chaos
at 6 ~ 144.7. For greater 6 ~ 147.4,152.9,157.5 one has
three almost equally spaced windows where the system
is nonchaotic again, with attractors of period 3, 6, etc.
The present results are very similar to those presented
in Ref. [9], even though a quantitative comparison is not
possible, because the underlying semiclassical models are
quite different (the model of Ref. [9] is more appropriate
to the case of very low fluxes).

For very large values of the pumping parameter a to-
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FIG. 2.
parameter.

The same as in Fig. 1 for a wider range of pumping

FIG. 3. The same as in Fig. 1 for N = 2, Nex = 50, and
initial field o = 58.

tally unexpected behavior appears (see Fig. 2). For 6 =
f. ~ 166.5 an abrupt transition of the field is exhibited,
through a sequence of jumps between different chaotic
attractors centered around the roots of Eq. (15). When
6 is increased a greater number of roots of Eq. (15) are
available: the system becomes multistable and the roots
larger than zo attract the field through a sort of “classi-
cal tunneling” mechanism. In other words, the basins of
attraction of the unstable fixed points—actually chaotic
attractors for the current values of the parameters—are
so tightly interwoven that the system becomes strongly
sensitive to 0; this reflects on a critical dependence on the
initial condition, and the system tunnels towards totally
unpredictable attractors. In this situation an accurate
check of the numerical integration time dt is in order.
From Eq. (10) one can see that the time-evolution scale
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FIG.4. Thesame asin Fig. 3 for a wider range of pumping
parameter.
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is T ~ 2wy/mNex. For the numerical results presented
here integration steps dt < 7" have been used; in this
limit, for varying dt one can check that 6. is unchanged,
whereas both the tiny details of the time evolution and
the particular attractor that is reached may be slightly
different. Notice that the average tunneling time is of the
order of Ngy, much less than the maximum time scale
t'sc ~ N2, needed for agreement between classical and
quantum evolutions [6, 10].

As regards the value of 6. as a function of Ngx we have
an indication about an analytical dependence in the form
of a quadratic power law for zg near the center of the set
of roots. On the other hand, one should notice that for
low fields (where, however, the semiclassical approach
is no longer realistic) the transition becomes broadened,
and the field starts jumping between fixed points instead
of chaotic attractors.

In Fig. 3 the case N = 2 for the same previous values
of Nex and zo are plotted. The period-doubling route
to chaos for N = 1 is replaced here by an opening up
of the fixed point into a quasiperiodic attractor. Then
the system undergoes a sharp transition at ., ~ 141 to-
wards a multistable behavior (see Fig. 4). In this case
the field jumps between period-2 attractors, and between
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chaotic attractors for very large 8. A wide window for
178.3 < 8 < 190.7 contains an isolated very stable period-
2 attractor around Z = 75.

In conclusion, we have studied an exact semiclassical
model for a regularly injected micromaser. In the high-
flux regime, after the customary period-doubling route
to chaos, for very large values of the pumping parame-
ter the system undergoes a new type of “phase transi-
tion,” the field jumping between different chaotic attrac-
tors. Also other unexpected scenarios, different from the
usual period-doubling route to chaos, have been shown.
The system is in a strongly nonlinear regime and exhibits
a complicated mixture of periodic orbits, chaos, and mul-
tistability, with competition between different attractors
(analogous mechanisms of competition between attrac-
tors have been found in a study of the bistable behavior
of the circular map [11]). The comparison between the
N =1and N = 2 cases shows the dramatic differences in-
troduced in the dynamics by the presence of many atoms
in the cavity. This is the signature of cooperative-in-time
mechanisms underlying the field amplification in a physi-
cal situation that lies between the microscopic maser and
the ordinary many-atom maser.
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