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The problem of noise from external feedback control is addressed for homodyne detection of optical phase
shifts. Two different schemes are analyzed: the conventional single-homodyne detection, and a two-quadrature
scheme, which involves couples of independent measurements of two conjugated quadratures. The effective-
ness of the feedback mechanism in both schemes is studied versus the feedback coupling parameter and
high-sensitive detection regimes are discussed. The effect of nonunit quantum efficiency of photodetectors is
also considered. It is shown that nonunit quantum efficiency affects phase sensitivity in the single-quadrature
scheme to a larger extent than in the double-quadrature[84650-294®6)02411-0

PACS numbd(ps): 42.50.Dv

[. INTRODUCTION in a 7w window, instead of a Z one. The second reason is
that the theoretical description of a homodyne detector is
The task of any phase detection scheme is to obtain theomplicated by the need of a feedback to adjust the value of
sharpest probability distribution with the minimum amount the reference phadehanging the phase of the local oscilla-
of photons impinging into the measuring apparatus. Historifor). The need of a feedback is conceptual—not just a
cally this topic has stimulated a lot of theoretical wik2], ~ technicality—because the sensitivity of the apparatus de-
however, with most effort devoted to the problem of a propefPends dramatically on the actual value &f- ¢o, and the
quantum mechanical definition of the phase, without paying®hase shifip a priori is unknown. The feedback complicates
much attention to the actual feasibility and simplicity of the the quantum description of the detector greatly, because now
detection scheme. In particular, homodyne detection still re Single quantum outcomein a series of repeated measure-
mains the most commonly adopted detector in any highments depends on the past history of outcomes. Anyhow,
sensitive interferometry, but only a few approaches to thig!eglecting the above difficultiemnd considering the detec-
scheme viewed as a phase detector have been preseni€fi @ working in the optimal-sensitivity regipiit is well
[3,4]. known that the phase sensitivisgp~ (n) ~* can be achieved
There are two main reasons why conventional homodyné0r squeezed input states that have photons equally distrib-
detection have not attracted much attention from theoretitted between signal and squeezing: the possibility of such
cians. The first reason is that homodyning does not represefPtimization, along with the relative simplicity of the
a kind of phase detection in a strict sense. In fact, thescheme, are the main reasons why homodyne detection still
output photocurrent is proportional to a quadratirg ~ femains so ‘popular among experimentalists. However, as
=1 (ae "o+ a'e0) of the field. Upon dividingk,, by the ~ 150 Shown in the following, the actual achievement of opti-
) ] ] ) s mal sensitivity is still limited by nonunit quantum efficiency
input field amplitude|(a)| (which should be known in ad-  4f getectors.
vancg one has a knowledge of the phase stiifonly in the A way to overcome some theoretical difficulties arising in
average sense, 4%, )=|(a)|cos(b—¢y), but a single out-  homodyne detection of the phase is to consider a scheme
comex of §<¢0 still may correspond to an unreal phase whenbased on measurements of couples of conjugated quadra-
x>|(a)|. Moreover, in this way only a single quadrature tures, sayx, andX, _.;. In this case the knowledge of
cos(p— ¢y) is obtained, and henag turns out to be defined both quadratures cogf ¢,) and singp— ¢,) can be achieved
without the need of knowingga)| a priori, and with¢ cor-
rectly defined in a Z window. In the following these
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ally any scheme for phase detection that is not basgdion Homodyne
guadrature measurements always needs more than one mea- Photocurrent
surement of the phase shift, at least for setting the working
point ¢ for best sensitivity. The measurements iadepen-
dentin the sense that they are performed on the same pre-
pared input state, not on the state after state reduction from &
the preceding measureméttie latter is the case of the adap-
tive phase measurements recently introduced in F&j.
This situation is common in experiments: in practice it apt 5050
means that the whole sequence of measurements is per- Signal

formed on a stable radiation source, well within the stability 0—@— a
time of the source. Typically in current experimefgse, for ‘ Lo
example, quantum tomographic experimef®) up to
10°~1C¢ homodyne measurements at different reference b10
phasesp, with respect to the local oscillatgt.O) are per-

formed within the stability time of the source. Hence, in 5
practice, the only difference between one-quadrature and
two-independent-quadrature schemes is that for the former
¢, is always adjusted at the best sensitivity working point,

whereas for the lattes, is alternately shifted byr/2 every tector. The field moda undergoes an unknown phase skiftto be

_couple of measurements. Recent stu«ﬂﬁﬂsh_ave §hown that measured. From each homodyne outconame extracts an estima-

mdepe_zn_dent megsyrement scheroas a<_:h|eve.|deal phase on b, =, (X bo) Of b. With the estimations, the feedback

sensitivity ¢~(f)~*, but only for particular input states |oop adjusts the LO phase shib o according to the map

(weakly squeezed states with fixed orientation of the squeezs | . (1—\)¢ o+ 1 ¢, .

ing direction. On the other handjoint measurement

schemeshave a sensitivity which is independent of the ) ) ) _

phase, but they suffer additional noise due to joint measurd€Sults from Monte Carlo simulations in Sec. IlA, and dis-

ment [9], and can at most achieve phase sensitivityCuSSion on nonunit quantum efficiency in Sec_. I1B. Sect|or_1

S~ (ny 2R [10]. Il analyzes the two—quadrature.scheme, and is structuredn in
Hence, at the present status of art, there are two schem# same way as Sec. II. Section IV closes the paper with

which can achieve ideal sensitivigjp~ (1) ~*: the conven- Some concluding remarks.

tional one-quadrature homodyne detection, and the uncon-

ventional two-quadrature homodyne detection with indepen-

dent measurements. Both schemes need a feedback to keep Il. SINGLE-QUADRATURE PHASE DETECTION

detectors in the best sensitivity region. So, why use the two-

quadrature scheme? There are two kinds 9f reasons. The The homodyne detector is depicted in F|g 1. The input

more practical reason is that—for a numben of input  modea undergoes an unknown phase shiftto be mea-

signal photons up to thousands—the two-quadrature schemgred; a 50-50 beam splitter mixes the input with a LO at the

is less affected by nonunit quantum efficiency than the oneg, e frequency oh prepared in a highly excited coherent

basis of detailed ical caleulati S dv. th %tate|z>. The LO is time coherent with the input mode
asis ot detailed numerical carculation. Secondly, the Meaguy, o giapie phase differeneg o relative toa. The output
surement of two quadratures allows a proper phase definition : : .
) . modes from the beam splitter are just the sum and difference

for each single experimental evdnitl].

Thus the aim of this paper is twofold. On one hand we9f ttme input modes, and the difference photocurrent

give a detailed study of external feedback dynamics on théo=N2—N at zero frequency is detected, which in terms of
basis of Monte Carlo simulations of real experiments: in thisthe input modes is given by, =i(ab’—a'b) for an appro-
way we will confirm the experimentalists’ confidence thatpriate choice of the path lengths before detectors. In the
feedback-assisted homodyne detection provides a practicaljtrong LO limit |z|>1 the reduced photocurremt /|z| is
convenient way to measure phase shifts, but we give at thﬁlst the quadraturé(q;Lo_,T/zEID/2|z|, and thus the homo-

i h | perf f the f k h .
same time the actual performance of the feedback versus tcﬁme detector becomes a quadrature detector, with the LO

feedback coupling and input photofts). On the other hand, 0ri)]laying the role of a stable classical reference for the phase.

we draw attention of experimentalists to a scheme based ) he i ith
couples of independent measurements of conjugated quadra- W& NOW consider squeezed staes() at the input, wit

tures, showing that it provides a high-sensitive measureme@MPlitudea=|a|e'? and squeezing parameter-re'®”. As
of the phase for a wide range of values of quantum effiS shown in the following, the best sensitivity is achieved for
ciency, input energy, and feedback parameter. Actually this’Lo hear to¢, whereas the sharpest probability distribution
scheme is no more difficult to realize than the single-iS obviously obtained when the directigh of the detected
quadrature one, because it just needs a phase shifter thgwadraturex, is the same as the direction of squeezindor
switches between 0 ang/2 shifts. this reason, in the following we will consider only states with
The outline of the paper is the following. Section Il is = ¢. For such states the probability distribution of the out-
devoted to the conventional single-quadrature scheme, witbomesx of >A<¢LO,7T,2 is the Gaussian

Feedback Loop
dro = (1= A)oro + Ao,

FIG. 1. Schematic outline of a feedback-assisted homodyne de-
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1 —
P(X;bLo;d)= 272 o &) N po=7/16
[x—X(ro— $) 12 s| I
Xexp{ 28%(hro=6) |’ @ .
=
with both averagex and variance A?> depending on <
o= ¢ o— ¢ as follows: RSy
=
X(¢)=lalsin(e), @ S
A%(p)= 1[cosh2r)—sinh(2r)cog2¢)]. ©)

From Eq. (3) it is clear that the sharpest distribution is
reached whewp, o coincides with the shiftp to be measured,
whereas for fixed input photond) the smallest variance  FIG. 2. Probability distributiop(x; ¢, o ; ¢) of the field quadra-
A2(0) is achieved for equal numbers of signal and squeezin§!r® X4, =2 for a squeezed state with an equal number of signal
photons, i.e., foa|?=sintfr=(N)/2. On the contrary, for and squeez!ng photonga(?= sinfr=500), and With. .both.signal.
é, o different from ¢ the distribution(1) dramatically broad- and squeezing phases equal to zero. The probability distributions
ens: this situation is illustrated in Fig. 2, where we report" three values ot o are plotted.
p(X; b 0;¢) for =0 at three different values ap, .

Our aim is now to extract information on the phage _ X ™
from the random outcomesin Eq. (1) or, more precispely, to P~ ¢LO_arCS"—(m> B(le] = Ix)) = 3 sgr(x) 8(|x| = |al),
define a measureghase outcomep, =d¢,(X;d o) as a 4
function ofx at fixed ¢ o .

In particular, dealing with the homodyne detectionwhereéd(z)=1 for z=0 and#d(z)=0 for z<0. We empha-
scheme, from Eq.(2) one is tempted to adopt size that the choice of the phase fat=|a| actually is not
¢, — o= —arcsin/|a]), but there are still events with relevant for highly excited input states, where such events
[x|>|a| for which no phase shift is defined. Usually thesebecome very rare. More relevant, on the contrary, is the fact
events are discarded, but they still carry the information thathat ¢, — ¢, is defined in ar window centered around
b, — dLo= sgn) /2. For this reason we adopt the defini- zero, instead of a2 window. The probability distribution of

tion ¢, in Eq. (4) is given by
11 Wy o
57 §er{m[l—3"‘(¢m— D], ¢e=doxm/2

®)

Plito DT oot dio- ) p[ _ (Asin(bio— ) —sin(dio— &)1
A7 A($Lo—¢) 40% (b0 ¢)

] otherwise.

In Eq. (5) erf(x)=(2/\/;)f§§dte*t2 denotes the error prob- S(p—by) .
ability function, and the distribution is normalized for |p—du|l~|——=——| o
(PLo— ¢y) e[ —7l2,7/2]. x=0
o= dy)
_ ~———| A9
A. Feedback-assisted measurements OX =0

As already observed, the closéig is to ¢, the sharper 1 Lo
the distribution(5). This can be qualitatively shown by the :m[1+2<n> Sin(éLo— ¢)]. (6)
Gaussian approximation db) based on error propagation
calculus. From Eq(3) one obtains Unfortunately ¢ is the value that we want to measure, and
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we do not know iF in advance: thus a feedback loop to adjusprocess for bothp, and ¢ o, thus adding noise to the sta-
the value of¢, o is needed, otherwise the method becomestionary distribution(5) achieved withg o= . As we will
useless. Letp, denote the outcome of a measurement peryqq in the following, such noise is vanishingly small for a
formed W'th a prev_lously chosen valuio: a linear feed- large range of the parametar, and hence the feedback
back Qctlon vv_h|ch improveg, o for a subsequent measure- mechanism turns out to be very effective.
ment is described by the map Let us describe in detail the evolution of the system
bro—(1=N)dLo+ Ny, 7) driven by feedback?). At the beginning there is na priori_
knowledge of¢, and hencep g is chosen at random with
where\>0 is a coupling parameter. This is a kind of exter- uniform probability distributionp® (¢, o;¢) =1/27 (in the
nal feedback which acts on the path length of the local osfollowing, the parametric dependence of all probabilities on
cillator but does not affect the input mode. When applied forthe true valueg is explicitly indicated. After the Nth mea-
a sufficiently large number of measurement stépsthe  surement step the probability distributigi™N (¢ o;¢) is
same constant phase shif) the feedback mechanisk?) improved by the feedback, starting from the previous one,
should drive ¢ o towards the optimum valuep, o= ¢. pN"1(, o: ). The iterative relation among probabilities
Moreover, due to statistical deviatiodg — ¢+ 0 around the can be obtained using E@7) in terms ofp(¢, ;di0: ),
“true” value ¢, one expects that error propagation driven bywhich is just the probability density op, conditionedby
the feedback fromp, to ¢ o should produce a diffusion the LO phase shifty 5. One has

P di0i)= | dalo [ %0 a0, by i6L01 00 V(B9 daulbio-(1-NdloNb), @

where 8, denotes the #-periodic Dirac delta. Shifting the variablg, — ¢, — ¢/ leads to

72

p8(010i6)= [ dolo| " db,p(s+ Lo bloidIPLS P 6l0i D) ban( o= bl Na)

72
zf 4, p(b, (1-0)+ bLoibio Ay 1APS (S0 Ay 19). (9)

Theunconditionecprobability density ofp, attheNth mea-  where it is also apparent that* depends weakly ogin).

surement step is just the convolution of the conditional onélhe second assertion is shown in Fig. 5, where the evolution

with p(~D( o #), namely, of the rms widths¢(N) of pN) (¢, ; #) is reported for two
different values of\. In the limit A—0, numerical simula-

tions show that phase sensitivity reaches the ideal bound

PN (g, ;)= f_ﬂ dopLop(dys ;Lo d) PN (dro; d).

(10 1

Oy ZE, (11

Note that¢,’s outcomes are distributed in am2window,

even thoughp, — ¢, o is confined in ar window. however, the sensitivityl1) is achieved after an increasingly
The evolutions given by Eq%9) and (10) are illustrated large number of steps. For finite values)otthe phase sen-

in Fig. 3 on the basis of a Monte Carlo simulation for ansitivity is given by

input squeezed state witim)=1000. At the beginningp, o

is randomly distributed, and thus the distribution @f is C(N)

very broad. For increasing\ both pM(¢, ;¢) and 5, ZWv

p{¥(dbL0; @) exhibit a narrow central peak, with nonvanish-

ing tails. Eventually, for largé\ the stationary distributions whereC()\) is an increasing function of: Eq. (12) shows

for both ¢, and ¢, are Gaussian. The evolutions in the that the feedback does not affect the power lawdiy, , but
figure have been obtained far=0.2. In the following we  gnjy changes the proportionality constant. In Fig. 6 the be-
denote byN* the number of measurement steps that argyavior of C(\) versus\ is reported, showing that for<1
needed in order to reach the stationary distribution. Varying)my very low noise is added, and thus the feedback loop is
the value of N two phenomena occur: on one hand f0rvery effective.

smaller\ one needs a largd™* to reach stationary distribu-  On the basis of the previous numerical results we can now
tions; on the other hand the smallber the sharper the final petter understand the feedback mechanism using some ana-
p(N*)(qﬁ* ;). The first assertion is illustrated in Fig. 4, lytical approximations valid for largén)>1. From Eqs(4)
whereN* is plotted versua for different values ofn), and  and(5) we have

(12
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FIG. 3. Evolution of both the experimental distributions

pN(g, ;¢) andp{N(éLo;¢) in Egs.(9) and(10) from a Monte

Carlo simulation of feedback-assisted homodyne measurements.

The number of data collected in each step i4.18) Distributions

pMN (o, ;¢) versuse, for N=1,7,12, and 10@the last histogram
is compared with a Gaussiar(b) Distributionsp{Y) (¢, ; ) ver-

Sus ¢ o as in (a). The initial distributionp@(¢ o;¢) is set at
random. All plots are obtained for=0.2, | «|?>=sintfr=500, and
$=0.

¢*:¢Lo—%, by —p<l. (13

100 150 200 250

50

FIG. 4. Number of stepdl* needed to reach the steady state,
versus the feedback paramekefor different input photon numbers
n=(n).

o 1 ex;{_M}
P(dy ;dL0; T Tpr— 20%(po— )]’
(14

and variancer?(¢) can be easily calculated for small feed-
back adjustment®= ¢ o— $»<<1 using Eq.(3). One has

1 (n 1 ( <p2>
2(¢)  20%¢)  o%0)\ 1 o%0))"

(15

wherea(0)=1/(2(n)) is the ideal sensitivity11). In addi-
tion, Monte Carlo simulation shows that the distribution
PV (dL0; @) itself is a Gaussian fok=N*, namely,

L
- —
oF 3

<. A=11

‘OP' v
oL .
o F
T
S L A=01
~— [ v 3

P I Lo b e v T

50 100 150 200 250
N

FIG. 5. Semilog plot of the rms width gf™ (¢, ; ¢) versus the
number of feedback stepd for two different values of\. The

The probability distribution5) can be approximated by the simulation is performed on a state with=0, | |?>=sintfr=500,

Gaussian

and with 18 data for each step.
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FIG. 7. Phase sensitivitp$, versusn=(n) from a Monte
Carlo simulation of feedback-assisted homodyne measurements, for
quantum efficiencyy=1.0,0.98,0.96,0.94, and 0.92. The feedback
coupling isA=0.2. The numbeN, of steps used to reach the
steady state is 100. The simulation is performed on a state with
¢=0, |a|?>=sintfr=500, and with 16 data for each step.

FIG. 6. Proportionality constant of the sensitivity power law
8¢, =C(\)(n)~! as a function of the feedback paramexerThe
inset is an amplification of the small's region, where feedback is
more effective.

(Lo~ ¢)°

1
W bLoid)=—=exf — —— 2
pLO(¢LO ¢) 2775¢|(_,\O|)2 F{ 25¢(|_’6|)2

In the present approximation botp™ (¢, :¢) and

. (16 . 1
dx'p(x’; () —
B pP(X";dro:d) 27TF3]

pn(xifﬁLoifﬁ):f

r_ 2
p(,_'(“-))(qb,_o ;) can be considered as defined on the whole real Xexp{ — u , (19)
axis instead of a 2 window. Using the evolutior(9) and 21,
Eq. (14) for p(¢,:d0;¢) it is easy to check that . .
p{¥(éL0; @) remains Gaussian for all subsequent steps. Thgvhere the extra noise can be simply evaluatefilass]
width of this distribution evolves as follows: Fi:(l_ 7. (20)
5¢<L“c‘)>:|1_)\| 5¢<L’\5* Ve Nh5¢<&;, 17) Hence the output probability distribution still has the Gauss-
ian shapg1), however, with the larger width
namely, asymptotically the feedback achieves an exponen- Az((p)_)Az((P)JFF%_ (21)

tially convergent sensitivity with rate proportional o *

(the feedback parameter is confined in the inter¥al Nonunit quantum efficiency dramatically degrades phase
€[0,2]). The evolution ofp™ (¢, ;¢) can be calculated sensitivity: the distributiorp,(#, ; bL0;#) now is broader
from Eqgs.(10), (14), (15), and(16): a straightforward calcu- thanp(¢, ;¢ o;¢) and for large(n) Eq. (15) must be re-
lation shows thap™N) (¢, ; ¢) is Gaussian to second order in placed with

(n)~1, with variance

—21—=@[A2<¢>+r2]=@[1—4@<p2 . (22
5N =o?(0)+ 52 o (@) 2 B ] R
5 N>N* Upon substituting Eq(22) in Eq. (19) [following the same
=\o%(0)+e M 54§ —— (0). (18 lines for optimizing Eq.(18)] one is led to the shot noise
sensitivity

Equation(18) is in agreement with Eq.12), but the depen- N N
dence of C(\) versus\ cannot be evaluated within the (N) 2(1—7)

. ann 5\ . (23)
present analytical approximation. n(n)

Even though the feedback mechanism is still effective, it
cannot overcome noise due to nonunit quantum efficiency. In

When homodyne detector involves photocounters withFig. 7 we report the phase sensitivitgp versus(n) for
nonunit quantum efficiencyy<1 the output probability dis- values of# slightly different from unit. The strong degrada-
tribution p,(X; ¢0;¢) becomes a Gaussian convolution of tion of sensitivity is apparent: all curves fer<1 converge
the ideal probabilityo(X; ¢ o; @#). One has to shot noise, and the asymptotic sensitivi®p) is actually

B. Nonefficient detectors
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reached for a small number of photor®), roughly large number of steps. It is clear that, as for the one-
(ny=(1— 7)1, which is of order of tens also for high effi- quadrature case, the input state must be prepared with paral-

ciency n=0.9. lel directions for squeezing and signal, and so the same phase
parameters of Sec. Il will be adopted for the input state.
1. TWO-QUADRATURE PHASE DETECTION In the two-quadrature scheme each experimental event

) ] ] _ consists of a couplex(y) of outcomes for the two conju-

In this section we analyze a simple phase detectionyteq quadratureicQSLo,,,,g and §(¢LO_ These two measure-
schgme based on independent measuremerjts of COUpIesncm)énts are independently performed well within the stability
_conjugated quadratures: As aIreany sh_own in Rt for . time of the sourcéi.e., on the same prepared radiation input
Input sfueezed states with squeezing allgneq_along t_he (.j'regfate). As the two measurements are independently per-
tion of the two quadratures, the joint probability d|str|but|onf S ” P . N

e : . ormed, the joint probability distributiomnv(X,y; ¢ ;@) is
of the two quadratures is just the Wigner function, wherea§actorized as follows:
its marginal phase probability can achieve ideal sensitivity '
8¢~ (n)~1 for weak squeezingonly a few percentage of WX,V bLo.d)=Pp(X;dLo— 72 ;0)p(Yidio:d), (24)
squeezing photonsThis difference with respect to the one-
quadrature scheméwhere 50% of squeezing photons is with quadrature probabilitiep given by Eqs.(1)—(3). The
needeglis due to the fact that the two-quadrature scheme iphase value inferred from each event is the polar angle of
more sensitive to the tails of the phase probability distribu<{x,y), namely,
tion than the single-quadrature one. Here we study the two-
guadrature scheme in the general case, hamely, as a detector B
of an unknown phase shifb, hence with the direction of ¢*—¢Lo—arctar6; ’
squeezing ellipse arbitrary with respect to the two-quadrature
frame. In this case the probability distribution of the two where arctan is evaluated betweenr and 7, taking into
quadratures is no longer the Wigner function, and sensitivityaccount the individual signs of andy. In this way ¢, is
is greatly degraded, similarly to the one-quadrature schemelefined in a 2r window, and there is no need to know the
Again we need a feedback loop to drive the detector towar@mplitude|(a)|=|a| of the input field. The phase distribu-
the optimum sensitivity region, and eventually the detectotion is the marginal distribution of24) integrated over the
will measure the Wigner function only after a sufficiently radius

(25

M(dy ;bLo;P)= f:dPPW(P COS b o~ Py ).p SINPLo— by )i bLo:d). (26)

Substituting Eqs(1)—(3) and (24) into Eq. (26) we obtain

. o exd —v(do—¢)]
M(by i bro; ¢)_4’7TA(¢)|_O— $)A(PLo— ¢+ T2) k(Lo ¢y i PLo— D)

X (17 ho P ih0= [rr( o= by ibio B)
X{1+ erf 7(pLo— b i bLo— )1}, (27)

where The above distribution is very narrow and centered in
¢, = ¢ for ¢ o= ¢, whereas it shifts and rapidly broadens
for ¢ o different frome. In Fig. 8 we report the distribution
cop, sirfe, M( ¢, ;PLo; @) of a squeezed state wiith=0 and for dif-
Aot nl2) + A% )}, (28)  ferent values ofp, o and sinfr=0.05n) (only a few percent
erm ¢ of squeezing is needed, see R¢8J).
For ¢ o=¢ (i.e., when we measure exactly the two
guadratures corresponding to principal squeezing )attes
coSe sin%} factorized distribution24) coincides with the Wigner func-

1
K(<P*:<P)=§

Jal?
o=

AZ(p+7/2) + A?(@) 29 tion Wy(e, @) of the input field, namely,

W(X,Y; ;) =Wo(x+iy,x—ly)

2 2
~__lal[ sinp,cosp  cosp,sing 1 _ 1 «d — (x=[aD® 'y
* 2 [A%(o+7l2) A%(p) (e, 9) TO107 o1 03

(30) (3D
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FIG. 9. Evolution of the experimental distribution

; S wN(x,y;¢) in the complex plane from a Monte Carlo simulation
quadrature homodyne detection with input squeezed state WitQ o quadrature feedback-assisted measurementwitd.2. The

(n)=1000 and squeezing photons s%nnh(?.OS. Both signal and ,mher of data collected in each step i€.10he distributions for
squeezing phases are set to zero. The distributions for three dlffef\]:114’12’ and 50 are reported. In all plats=0, (f)=1000, and
ent values ofp o are reported. the number of squeezing photons is set equal to(B)X)%he local
oscillator phase is initially distributed at random. The lower inset
where shows the behavior of the functia(\) which appears in the sta-
tionary varianceAy=g(\)e™" of thew™(x,y; ¢) distribution.

FIG. 8. Marginal phase distributiom(¢, ;¢ o;¢®) for two-

Uzzlezr Uzzle*Zr_ (32) with m(¢, ; d0;¢) given by Eq.(26). Similarly, the LO
o A phase shift probability afte¥ feedback adjustments is given
by
However,¢ is just the quantity that we want to measure, and - dé BLo—\o
we need a feedback loop as in EE) in order to adjust D(Lhc'))(¢|_o;¢)=f 1 ’;\m( by Lcl) X . i¢)
dLo- T B
The uncertainties in Eq32) are the true intrinsic quan-

tum uncertainties of the squeezed state: no additional noise p(N-1) Lo~ Ny ‘b (35)
has been added by the measurement, as for the 3 dB added Lo 1-N ')

noise of joint measurement. The absence of added noise re- _ . .
sults from independence of the two homodyne measurell Fig. 9, we report the results of a Monte Carlo simulation
ments. One should stress, however, that the price to pay hefd the feedback-assisted evolution of the unconditioned dis-
is the need of twice the number of measurements with retribution w(M(x,y; ¢) for ¢=0 and for initial distribution
spect to the joint measurements césee also notglQ]). p(fg(mo;gé) set at random. At the beginning the distribution
w(x,y;¢) is very delocalized in the complex plane,
with a ring shape around the origin, corresponding to no
information on the phase. During the evolution, the
The feedback mechanisi) acts in the two-quadrature distribution shrinks approaching the limiting distribution
scheme in a way similar to the single-quadrature one. On&V,(x+iy,x—iy) after a sufficiently high numbeM of steps.
has the unconditioned probability distribution in the complexin order to check convergence of the distribution in the com-

A. Feedback-assisted measurements

plane plex plane, we evaluate the variankg at each step, and we
find that after a sufficiently large number of stepg con-
wN(x y: :J deb WX,V ; (N) ‘b)), verges to a stationary valuky=g(\)e ". For the Wigner
(x.y; ) -7 PLoW(x.Yidroi $)Pio(bro: ) function one hasAy=1/2e™", whereas in practicg(\) is

(33)  larger than 1/2, reflecting the noise added by the feedback.
The behavior of(\) is also reported in Fig. 9. It is close to
and the unconditioned marginal phase probability after 1/2 for a wide range of values of, showing that feedback
steps is given by a convolution analogous(16), adds a very low noise. For—0 the noise vanishes: how-
ever, the smaller i&, the greater is the numb&r* of steps
needed to reach the steady state.
dé ~m : ; (N) b, In Fig. 10, the corresponding marginal phase distribution
- Promidyidoid)Piolbioid) mN) (¢, ;@) is reported. This starts with a central peak in
(34  the middle of high and broad tails, it narrows during the

mM (¢, ;¢)=J
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FIG. 11. Phase sensitivit§¢, versus(n) from a Monte Carlo
simulation of feedback-assisted double-homodyne measurements,
for the same values ofy as in Fig. 7. The feedback coupling is

Events
0 1000
T
[ [/}
2]
(]
L] L
[~
L

-2 -1 0 1 2 A=0.2, and the numbeM,, of steps used to reach the steady state is
50. The simulation is performed on a state w0, (R)= 1000,
P sintPr=>50, and for 10 data at each step. The lower inset reports the

optimal squeezing fraction relative to each value of the quantum
efficiency . The upper curve is fop=1. The upper inset reports
the exponenty of the phase sensitivity power ladgp~(n)~” as a
function of the quantum efficiency for (n) running from 100 to

FIG. 10. Evolution of the marginal phase distribution
mN (g, ;¢) from the same Monte Carlo simulation as in Fig. 9.

1000.

transient, and eventually approaches the steady distribution

in Eq. (27) for ¢= ¢ o after a sufficiently large number of 1 (x—|a|)? 2

steps. The phase sensitivity is given &g, ~(n) "1, with a S ;{ - =],

proportionality constant which approaches unit for decreas- 270107 2074 2073

ing \ (see also Fig. 1)1 (39
with

B. Nonefficient detectors
. - 1 1
Nonunit quantum efficiencyn of the photodetectors Ufzz(ezr—s): ngz(e_zr_s)’ (39)

causes the probability distribution of each measured quadra-

ture to become a Gaussian convolution of the corresponding _ o g

distribution for =1. The probability distribution in the Where the ordering parameteiis given bys=1—7"": this

complex plane is given by distribution is broader thalVy(x+iy,x—iy), and is given
by the Gaussian convolution &Y,

W, (X,Y;PLos @) =P ,(X;bro— 72;4)p (Vi dbLo: d), )
(36 w — J d2g W8T
1,,]—1(a,a)— Cﬂ-[(l_n)/n] O(ﬁ'B)
where p,(X; ¢ 0;¢) is given in Eq.(19). The feedback la— B2
mechanism is still effective in the presence of nonefficient xex;{ ——]. (40)
detectors, and the unconditioned distribution (1=n)n

The phase distributiom(,]'\‘)(qb* ; @) approaches the marginal
(N) PR . . (N) i phase distribution of E(q:38) for a sufficiently large number
Wy (XYi ) f, ﬂdd)LOW”(X’y’(ﬁLO’¢)pLO(¢LO'¢) of steps. For squeezed optimized states with number of pho-
(37)  tons limited by the relation

reaches a stationary distribution after a numiér of steps (ny=
(which is almost the same as fgr=1). The limiting distri-
bution is now given by a generalized Wigner functidr3]

a’opt(l_ 7))’

where a o= sint?r/(n) is the optimum fraction of squeezing
photons @~0.05, it meangn) up to thousands for efficient
W, (X,Y; @5 d) =Wg(X+iy,x—iy) detectorspy=0.9) the phase distribution exhibits a sensitivity
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which scales as¢~(n)~?, where the exponent is a func- tivity is given by the power laws¢, = C(\)/(n) versus the
tion of the quantum efficiency. On the other hand, for largerinput energy(n), whereC(\) is less than unit for <1, and
(n) it can be shown from Eq(27) that the asymptotic sen- achieves the minimum valug(\)= % for \—0. Hence the
sitivity is again shot noise limited. However, differently from feedpack-assisted measurement exhibits the ideal sensitivity,
the single-quadrature scheme, there is now a large range ghart from a proportionality constant. When nonefficient de-
(n) where one has only a smooth degradation of the ideglectors are involved, the feedback control is still effective,
sensitivity. It is also worth remembering that here only a fewpowever, it cannot clean out the extra noise due to quantum
percentage of squeezing photons is needed, whereas for tBiciency: in this case the phase sensitivity dramatically de-
one-quadrature scheme it is 50%. In Fig. 11 we report thgy-ades, and becomes shot noise limited(foy=(1— ) ..
phase sensitivity originated from feedback-assisted measurg;g difficulty can be partially overcome by means of the
ments with different values of the quantum efficiengyWe  second scheme, which is based on couples of homodyne
also report the optimal squeezing photon fraction, along Withneasurements. Here the feedback drives the joint probability
the behavior of the exponentas a function ofy in the low  gistribution of two quadratures towards the Wigner function
(n) region. Wy(a, @) of the input state, and it is effective for a wide
range of the coupling parameter. The corresponding mar-
IV. CONCLUSION ginal phase distribution exhibits an ideal sensitivity apart
from a proportionality constant, which is affected by the

In this paper we have siudied two feedback-assisted d%@fedback noise. When nonefficient detectors are involved,

tection schemes for the phase shift of a squeezed state P
radiation. Both schemes are based on homodyne detectio%e probability distribution of the two quadratures becomes
' foadened, and approaches the Wigner function

but in one case a single field quadrattffg is detected, \(a, ) after a sufficiently large number of steps. The
. ) . 1- e, ) )
whereas in the other each experimental event is a couple g inal phase distribution has a sensitiig— (7~ ?. For

independent measurements of two conjugated quadratur%%&,:r?(')o large number of ohotons the exponenis not far
X4 andX4_ .. The dynamics for both schemes have bee 9 P ponen

extensively studied numerically, showing that the externa rom unit for a broad range of the quantum efficiengyThe

feedback mechanism is very effective, and introduces a ne tates which achieve this optimal sensitivity require only a

ligible noise for a wide range of the coupling parameter. ew percent of photons engaged in squeezing, and this frac-

Smaller values of the coupling parameter produce a lowe on decreases for decreasing Therefore we conclude that.
Qe two-quadrature scheme can be used in practice to im-

additional noise, however, they need a larger number of ste o . .
to reach the steady state. The case of nonunit efficiency ove thg phgse sensitivity, and we propose it for experimen-
%I investigations.

photodetectors has also been considered, showing that t

feedback mechanism still works, and is not affected by the

detection noise. The performance of the two schemes in this

realistic situation has been analyzed in detail. One of us(M.G.A.P) thanks the Angelo Della Riccia
In the single-quadrature scheme the resulting phase senstoundation for a research grant.
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