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The problem of noise from external feedback control is addressed for homodyne detection of optical phase
shifts. Two different schemes are analyzed: the conventional single-homodyne detection, and a two-quadrature
scheme, which involves couples of independent measurements of two conjugated quadratures. The effective-
ness of the feedback mechanism in both schemes is studied versus the feedback coupling parameter and
high-sensitive detection regimes are discussed. The effect of nonunit quantum efficiency of photodetectors is
also considered. It is shown that nonunit quantum efficiency affects phase sensitivity in the single-quadrature
scheme to a larger extent than in the double-quadrature one.@S1050-2947~96!02411-0#
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I. INTRODUCTION

The task of any phase detection scheme is to obtain the
sharpest probability distribution with the minimum amount
of photons impinging into the measuring apparatus. Histori-
cally this topic has stimulated a lot of theoretical work@1,2#,
however, with most effort devoted to the problem of a proper
quantum mechanical definition of the phase, without paying
much attention to the actual feasibility and simplicity of the
detection scheme. In particular, homodyne detection still re-
mains the most commonly adopted detector in any high-
sensitive interferometry, but only a few approaches to this
scheme viewed as a phase detector have been presented
@3,4#.

There are two main reasons why conventional homodyne
detection have not attracted much attention from theoreti-
cians. The first reason is that homodyning does not represent
a kind of phase detection in a strict sense. In fact, the
output photocurrent is proportional to a quadraturex̂f0

5 1
2 (ae

2 if01a†eif0) of the field. Upon dividingx̂f0
by the

input field amplitudeu^a&u ~which should be known in ad-
vance! one has a knowledge of the phase shiftf only in the
average sense, as^x̂f0

&5u^a&ucos(f2f0), but a single out-

comex of x̂f0
still may correspond to an unreal phase when

x.u^a&u. Moreover, in this way only a single quadrature
cos(f2f0) is obtained, and hencef turns out to be defined

in a p window, instead of a 2p one. The second reason is
that the theoretical description of a homodyne detector is
complicated by the need of a feedback to adjust the value of
the reference phase~changing the phase of the local oscilla-
tor!. The need of a feedback is conceptual—not just a
technicality—because the sensitivity of the apparatus de-
pends dramatically on the actual value off2f0, and the
phase shiftf a priori is unknown. The feedback complicates
the quantum description of the detector greatly, because now
a single quantum outcomex in a series of repeated measure-
ments depends on the past history of outcomes. Anyhow,
neglecting the above difficulties~and considering the detec-
tor as working in the optimal-sensitivity region! it is well
known that the phase sensitivitydf;^n̂&21 can be achieved
for squeezed input states that have photons equally distrib-
uted between signal and squeezing: the possibility of such
optimization, along with the relative simplicity of the
scheme, are the main reasons why homodyne detection still
remains so popular among experimentalists. However, as
also shown in the following, the actual achievement of opti-
mal sensitivity is still limited by nonunit quantum efficiency
of detectors.

A way to overcome some theoretical difficulties arising in
homodyne detection of the phase is to consider a scheme
based on measurements of couples of conjugated quadra-
tures, sayx̂f0

and x̂f02p/2 . In this case the knowledge of

both quadratures cos(f2f0) and sin(f2f0) can be achieved
without the need of knowingu^a&u a priori, and withf cor-
rectly defined in a 2p window. In the following these
schemes will be referred to as two-quadrature schemes, in
contrast with the single-quadrature ones~based on conven-
tional homodyne detection!. Among the two-quadrature
schemes we can distinguish the following two categories:~i!
schemes based onjoint measurements of the two quadratures
~as double homodyne and heterodyne@5#!; ~ii ! schemes
based onindependentmeasurements. Notice that conceptu-
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ally any scheme for phase detection that is not based onjoint
quadrature measurements always needs more than one mea-
surement of the phase shift, at least for setting the working
pointf0 for best sensitivity. The measurements areindepen-
dent in the sense that they are performed on the same pre-
pared input state, not on the state after state reduction from
the preceding measurement~the latter is the case of the adap-
tive phase measurements recently introduced in Ref.@6#!.
This situation is common in experiments: in practice it
means that the whole sequence of measurements is per-
formed on a stable radiation source, well within the stability
time of the source. Typically in current experiments~see, for
example, quantum tomographic experiments@7#! up to
104–105 homodyne measurements at different reference
phasesf0 with respect to the local oscillator~LO! are per-
formed within the stability time of the source. Hence, in
practice, the only difference between one-quadrature and
two-independent-quadrature schemes is that for the former
f0 is always adjusted at the best sensitivity working point,
whereas for the latterf0 is alternately shifted byp/2 every
couple of measurements. Recent studies@8# have shown that
independent measurement schemescan achieve ideal phase
sensitivity df;^n̂&21, but only for particular input states
~weakly squeezed states with fixed orientation of the squeez-
ing direction!. On the other hand,joint measurement
schemeshave a sensitivity which is independent of the
phase, but they suffer additional noise due to joint measure-
ment @9#, and can at most achieve phase sensitivity
df;^n̂&22/3 @10#.

Hence, at the present status of art, there are two schemes
which can achieve ideal sensitivitydf;^n̂&21: the conven-
tional one-quadrature homodyne detection, and the uncon-
ventional two-quadrature homodyne detection with indepen-
dent measurements. Both schemes need a feedback to keep
detectors in the best sensitivity region. So, why use the two-
quadrature scheme? There are two kinds of reasons. The
more practical reason is that—for a number^n̂& of input
signal photons up to thousands—the two-quadrature scheme
is less affected by nonunit quantum efficiency than the one-
quadrature scheme: this will be shown in this paper on the
basis of detailed numerical calculation. Secondly, the mea-
surement of two quadratures allows a proper phase definition
for each single experimental event@11#.

Thus the aim of this paper is twofold. On one hand we
give a detailed study of external feedback dynamics on the
basis of Monte Carlo simulations of real experiments: in this
way we will confirm the experimentalists’ confidence that
feedback-assisted homodyne detection provides a practically
convenient way to measure phase shifts, but we give at the
same time the actual performance of the feedback versus the
feedback coupling and input photons^n̂&. On the other hand,
we draw attention of experimentalists to a scheme based on
couples of independent measurements of conjugated quadra-
tures, showing that it provides a high-sensitive measurement
of the phase for a wide range of values of quantum effi-
ciency, input energy, and feedback parameter. Actually this
scheme is no more difficult to realize than the single-
quadrature one, because it just needs a phase shifter that
switches between 0 andp/2 shifts.

The outline of the paper is the following. Section II is
devoted to the conventional single-quadrature scheme, with

results from Monte Carlo simulations in Sec. II A, and dis-
cussion on nonunit quantum efficiency in Sec. II B. Section
III analyzes the two-quadrature scheme, and is structured in
the same way as Sec. II. Section IV closes the paper with
some concluding remarks.

II. SINGLE-QUADRATURE PHASE DETECTION

The homodyne detector is depicted in Fig. 1. The input
mode a undergoes an unknown phase shiftf to be mea-
sured; a 50-50 beam splitter mixes the input with a LO at the
same frequency ofa prepared in a highly excited coherent
stateuz&. The LO is time coherent with the input modea,
with a stable phase differencefLO relative toa. The output
modes from the beam splitter are just the sum and difference
of the input modes, and the difference photocurrent
Î D5n̂22n̂1 at zero frequency is detected, which in terms of
the input modes is given byÎ D5 i (ab†2a†b) for an appro-
priate choice of the path lengths before detectors. In the
strong LO limit uzu@1 the reduced photocurrentÎ D /uzu is
just the quadraturex̂fLO2p/2[ Î D/2uzu, and thus the homo-

dyne detector becomes a quadrature detector, with the LO
playing the role of a stable classical reference for the phase.

We now consider squeezed statesua,z& at the input, with
amplitudea5uaueif and squeezing parameterz5rei2c. As
is shown in the following, the best sensitivity is achieved for
fLO near tof, whereas the sharpest probability distribution
is obviously obtained when the directionf of the detected
quadraturex̂f is the same as the direction of squeezingc: for
this reason, in the following we will consider only states with
c5f. For such states the probability distribution of the out-
comesx of x̂fLO2p/2 is the Gaussian

FIG. 1. Schematic outline of a feedback-assisted homodyne de-
tector. The field modea undergoes an unknown phase shiftf, to be
measured. From each homodyne outcomex one extracts an estima-
tion f*[f* (x;fLO) of f. With the estimationf* the feedback
loop adjusts the LO phase shiftfLO according to the map
fLO→(12l)fLO1lf* .
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p~x;fLO ;f!5
1

A2pD2~fLO2f!

3expH 2
@x2 x̄~fLO2f!#2

2D2~fLO2f! J , ~1!

with both average x̄ and varianceD2 depending on
w5fLO2f as follows:

x̄~w!5uausin~w!, ~2!

D2~w!5 1
4 @cosh~2r !2sinh~2r !cos~2w!#. ~3!

From Eq. ~3! it is clear that the sharpest distribution is
reached whenfLO coincides with the shiftf to be measured,
whereas for fixed input photonŝn̂& the smallest variance
D2(0) is achieved for equal numbers of signal and squeezing
photons, i.e., foruau25sinh2r5^n̂&/2. On the contrary, for
fLO different fromf the distribution~1! dramatically broad-
ens: this situation is illustrated in Fig. 2, where we report
p(x;fLO ;f) for f50 at three different values offLO .

Our aim is now to extract information on the phasef
from the random outcomesx in Eq. ~1! or, more precisely, to
define a measuredphase outcomef*[f* (x;fLO) as a
function of x at fixedfLO .

In particular, dealing with the homodyne detection
scheme, from Eq. ~2! one is tempted to adopt
f*2fLO52arcsin(x/uau), but there are still events with
uxu.uau for which no phase shift is defined. Usually these
events are discarded, but they still carry the information that
f*2fLO. sgn(x)p/2. For this reason we adopt the defini-
tion

f*5fLO2arcsinS x

uau D u~ uau2uxu!2
p

2
sgn~x!u~ uxu2uau!,

~4!

whereu(z)51 for z>0 andu(z)50 for z,0. We empha-
size that the choice of the phase foruxu>uau actually is not
relevant for highly excited input states, where such events
become very rare. More relevant, on the contrary, is the fact
that f*2fLO is defined in ap window centered around
zero, instead of a 2p window. The probability distribution of
f* in Eq. ~4! is given by

p~f* ;fLO ;f!55
1

2
2
1

2
erfF A^n̂&

D~fLO2f!
@16sin~fLO2f!#G , f*5fLO6p/2

A^n̂&
4p

cos~fLO2f* !

D~fLO2f!
expH 2

^n̂&@sin~fLO2f* !2sin~fLO2f!#2

4D2~fLO2f! J otherwise.

~5!

In Eq. ~5! erf(x)5(2/Ap)*0
xdte2t2 denotes the error prob-

ability function, and the distribution is normalized for
(fLO2f* )P@2p/2,p/2#.

A. Feedback-assisted measurements

As already observed, the closerfLO is to f, the sharper
the distribution~5!. This can be qualitatively shown by the
Gaussian approximation of~5! based on error propagation
calculus. From Eq.~3! one obtains

uf2f* u'Ud~f2f* !

d x̄
U
x̄50

d x̄

'Ud~f2f* !

d x̄
U
x̄50

D~fLO2f!

.
1

2^n̂&
@112^n̂&2sin2~fLO2f!#. ~6!

Unfortunatelyf is the value that we want to measure, and

FIG. 2. Probability distributionp(x;fLO ;f) of the field quadra-
ture x̂fLO2p/2 for a squeezed state with an equal number of signal
and squeezing photons (uau25sinh2r5500), and with both signal
and squeezing phases equal to zero. The probability distributions
for three values offLO are plotted.
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we do not know it in advance: thus a feedback loop to adjust
the value offLO is needed, otherwise the method becomes
useless. Letf* denote the outcome of a measurement per-
formed with a previously chosen valuefLO : a linear feed-
back action which improvesfLO for a subsequent measure-
ment is described by the map

fLO→~12l!fLO1lf* , ~7!

wherel.0 is a coupling parameter. This is a kind of exter-
nal feedback which acts on the path length of the local os-
cillator but does not affect the input mode. When applied for
a sufficiently large number of measurement steps~of the
same constant phase shiftf) the feedback mechanism~7!
should drive fLO towards the optimum valuefLO[f.
Moreover, due to statistical deviationsf*2fÞ0 around the
‘‘true’’ value f, one expects that error propagation driven by
the feedback fromf* to fLO should produce a diffusion

process for bothf* andfLO , thus adding noise to the sta-
tionary distribution~5! achieved withfLO5f. As we will
see in the following, such noise is vanishingly small for a
large range of the parameterl, and hence the feedback
mechanism turns out to be very effective.

Let us describe in detail the evolution of the system
driven by feedback~7!. At the beginning there is noa priori
knowledge off, and hencefLO is chosen at random with
uniform probability distributionp(0)(fLO ;f)51/2p ~in the
following, the parametric dependence of all probabilities on
the true valuef is explicitly indicated!. After theNth mea-
surement step the probability distributionp(N)(fLO ;f) is
improved by the feedback, starting from the previous one,
p(N21)(fLO ;f). The iterative relation among probabilities
can be obtained using Eq.~7! in terms of p(f* ;fLO ;f),
which is just the probability density off* conditionedby
the LO phase shiftfLO . One has

pLO
~N!~fLO ;f!5E

2p

p

dfLO8 E
fLO8 2 p/2

fLO8 1 p/2
df* p~f* ;fLO8 ;f!pLO

~N21!~fLO8 ;f!d2p„fLO2~12l!fLO8 2lf* …, ~8!

whered2p denotes the 2p-periodic Dirac delta. Shifting the variablef*→f*2fLO8 leads to

pLO
~N!~fLO ;f!5E

2p

p

dfLO8 E
2p/2

p/2

df* p~f*1fLO8 ;fLO8 ;f!pLO
~N21!~fLO8 ;f!d2p~fLO2fLO8 2lf* !

5E
2p/2

p/2

df* p„f* ~12l!1fLO ;fLO2lf* ;f…pLO
~N21!~fLO2lf* ;f!. ~9!

Theunconditionedprobability density off* at theNth mea-
surement step is just the convolution of the conditional one
with pLO

(N21)(fLO ;f), namely,

p~N!~f* ;f!5E
2p

p

dfLOp~f* ;fLO ;f!pLO
~N!~fLO ;f!.

~10!

Note thatf* ’s outcomes are distributed in a 2p window,
even thoughf*2fLO is confined in ap window.

The evolutions given by Eqs.~9! and ~10! are illustrated
in Fig. 3 on the basis of a Monte Carlo simulation for an
input squeezed state witĥn̂&51000. At the beginningfLO
is randomly distributed, and thus the distribution off* is
very broad. For increasingN both p(N)(f* ;f) and
pLO
(N)(fLO ;f) exhibit a narrow central peak, with nonvanish-

ing tails. Eventually, for largeN the stationary distributions
for both f* and fLO are Gaussian. The evolutions in the
figure have been obtained forl50.2. In the following we
denote byN* the number of measurement steps that are
needed in order to reach the stationary distribution. Varying
the value ofl two phenomena occur: on one hand for
smallerl one needs a largerN* to reach stationary distribu-
tions; on the other hand the smallerl, the sharper the final
p(N* )(f* ;f). The first assertion is illustrated in Fig. 4,
whereN* is plotted versusl for different values of̂ n̂&, and

where it is also apparent thatN* depends weakly on̂n̂&.
The second assertion is shown in Fig. 5, where the evolution
of the rms widthdf

*
(N) of p(N)(f* ;f) is reported for two

different values ofl. In the limit l→0, numerical simula-
tions show that phase sensitivity reaches the ideal bound

df*5
1

2^n̂&
, ~11!

however, the sensitivity~11! is achieved after an increasingly
large number of steps. For finite values ofl the phase sen-
sitivity is given by

df*5
C~l!

^n̂&
, ~12!

whereC(l) is an increasing function ofl: Eq. ~12! shows
that the feedback does not affect the power law fordf* , but
only changes the proportionality constant. In Fig. 6 the be-
havior ofC(l) versusl is reported, showing that forl,1
only very low noise is added, and thus the feedback loop is
very effective.

On the basis of the previous numerical results we can now
better understand the feedback mechanism using some ana-
lytical approximations valid for largên̂&@1. From Eqs.~4!
and ~5! we have
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f*.fLO2
x

uau
, f*2f!1 . ~13!

The probability distribution~5! can be approximated by the
Gaussian

p~f* ;fLO ;f!.
1

A2ps2~fLO2f!
expF2

~f*2f!2

2s2~fLO2f!G ,
~14!

and variances2(w) can be easily calculated for small feed-
back adjustmentsw5fLO2f!1 using Eq.~3!. One has

1

s2~w!
5

^n̂&
2D2~w!

.
1

s2~0! S 12
w2

s2~0! D , ~15!

wheres(0)51/(2^n̂&) is the ideal sensitivity~11!. In addi-
tion, Monte Carlo simulation shows that the distribution
pLO
(N)(fLO ;f) itself is a Gaussian forN*N* , namely,

FIG. 3. Evolution of both the experimental distributions
p(N)(f* ;f) andpLO

(N)(fLO ;f) in Eqs.~9! and ~10! from a Monte
Carlo simulation of feedback-assisted homodyne measurements.
The number of data collected in each step is 104. ~a! Distributions
p(N)(f* ;f) versusf* for N51,7,12, and 100~the last histogram
is compared with a Gaussian!. ~b! DistributionspLO

(N)(fLO ;f) ver-
susfLO as in ~a!. The initial distributionp(0)(f LO ;f) is set at
random. All plots are obtained forl50.2, uau25sinh2r5500, and
f50.

FIG. 4. Number of stepsN* needed to reach the steady state,
versus the feedback parameterl for different input photon numbers
n̄5^n̂&.

FIG. 5. Semilog plot of the rms width ofp(N)(f* ;f) versus the
number of feedback stepsN for two different values ofl. The
simulation is performed on a state withf50, uau25sinh2r5500,
and with 105 data for each step.

54 4499FEEDBACK-ASSISTED HOMODYNE DETECTION OF . . .



pLO
~N!~fLO ;f!.

1

A2pdfLO
~N!2

expF2
~fLO2f!2

2dfLO
~N!2 G . ~16!

In the present approximation bothp(N)(f* ;f) and
pLO
(N)(fLO ;f) can be considered as defined on the whole real

axis instead of a 2p window. Using the evolution~9! and
Eq. ~14! for p(f* ;fLO ;f) it is easy to check that
pLO
(N)(fLO ;f) remains Gaussian for all subsequent steps. The

width of this distribution evolves as follows:

dfLO
~N!5u12ludfLO

~N21!;e2NldfLO
~0!, ~17!

namely, asymptotically the feedback achieves an exponen-
tially convergent sensitivity with rate proportional tol21

~the feedback parameter is confined in the intervall
P@0,2#). The evolution ofp(N)(f* ;f) can be calculated
from Eqs.~10!, ~14!, ~15!, and~16!: a straightforward calcu-
lation shows thatp(N)(f* ;f) is Gaussian to second order in
^n̂&21, with variance

df
*
~N!.As2~0!1dfLO

~N!2

.As2~0!1e22NldfLO
~0! ——→

N@N*
s~0!. ~18!

Equation~18! is in agreement with Eq.~12!, but the depen-
dence ofC(l) versusl cannot be evaluated within the
present analytical approximation.

B. Nonefficient detectors

When homodyne detector involves photocounters with
nonunit quantum efficiencyh,1 the output probability dis-
tribution ph(x;fLO ;f) becomes a Gaussian convolution of
the ideal probabilityp(x;fLO ;f). One has

ph~x;fLO ;f!5E
2`

`

dx8p~x8;fLO ;f!
1

A2pGh
2

3expF2
~x82x!2

2Gh
2 G , ~19!

where the extra noise can be simply evaluated as@12,8#

Gh
25~12h!/h. ~20!

Hence the output probability distribution still has the Gauss-
ian shape~1!, however, with the larger width

D2~w!→D2~w!1Gh
2. ~21!

Nonunit quantum efficiency dramatically degrades phase
sensitivity: the distributionph(f* ;fLO ;f) now is broader
thanp(f* ;fLO ;f) and for largê n̂& Eq. ~15! must be re-
placed with

1

s2~w!
5

^n̂&
2

@D2~w!1Gh
2 #5

^n̂&
2Gh

2 F124
^n̂&
Gh
2 w2G . ~22!

Upon substituting Eq.~22! in Eq. ~19! @following the same
lines for optimizing Eq.~18!# one is led to the shot noise
sensitivity

df
*
~N! ——→

N@N* A2~12h!

h^n̂&
. ~23!

Even though the feedback mechanism is still effective, it
cannot overcome noise due to nonunit quantum efficiency. In
Fig. 7 we report the phase sensitivitydf versus^n̂& for
values ofh slightly different from unit. The strong degrada-
tion of sensitivity is apparent: all curves forh,1 converge
to shot noise, and the asymptotic sensitivity~23! is actually

FIG. 6. Proportionality constant of the sensitivity power law
df*5C(l)^n̂&21 as a function of the feedback parameterl. The
inset is an amplification of the smalll ’s region, where feedback is
more effective.

FIG. 7. Phase sensitivitydf* versus n̄5^n̂& from a Monte
Carlo simulation of feedback-assisted homodyne measurements, for
quantum efficiencyh51.0,0.98,0.96,0.94, and 0.92. The feedback
coupling is l50.2. The numberN* of steps used to reach the
steady state is 100. The simulation is performed on a state with
f50, uau25sinh2r5500, and with 104 data for each step.
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reached for a small number of photons^n̂&, roughly
^n̂&*(12h)21, which is of order of tens also for high effi-
ciencyh*0.9.

III. TWO-QUADRATURE PHASE DETECTION

In this section we analyze a simple phase detection
scheme based on independent measurements of couples of
conjugated quadratures. As already shown in Refs.@8# for
input squeezed states with squeezing aligned along the direc-
tion of the two quadratures, the joint probability distribution
of the two quadratures is just the Wigner function, whereas
its marginal phase probability can achieve ideal sensitivity
df;^n̂&21 for weak squeezing~only a few percentage of
squeezing photons!. This difference with respect to the one-
quadrature scheme~where 50% of squeezing photons is
needed! is due to the fact that the two-quadrature scheme is
more sensitive to the tails of the phase probability distribu-
tion than the single-quadrature one. Here we study the two-
quadrature scheme in the general case, namely, as a detector
of an unknown phase shiftf, hence with the direction of
squeezing ellipse arbitrary with respect to the two-quadrature
frame. In this case the probability distribution of the two
quadratures is no longer the Wigner function, and sensitivity
is greatly degraded, similarly to the one-quadrature scheme.
Again we need a feedback loop to drive the detector toward
the optimum sensitivity region, and eventually the detector
will measure the Wigner function only after a sufficiently

large number of steps. It is clear that, as for the one-
quadrature case, the input state must be prepared with paral-
lel directions for squeezing and signal, and so the same phase
parameters of Sec. II will be adopted for the input state.

In the two-quadrature scheme each experimental event
consists of a couple (x,y) of outcomes for the two conju-
gated quadraturesx̂fLO2p/2 and x̂fLO

. These two measure-
ments are independently performed well within the stability
time of the source~i.e., on the same prepared radiation input
state!. As the two measurements are independently per-
formed, the joint probability distributionw(x,y;fLO ;f) is
factorized as follows:

w~x,y;fLO ;f!5p~x;fLO2 p/2 ;f!p~y;fLO ;f!, ~24!

with quadrature probabilitiesp given by Eqs.~1!–~3!. The
phase value inferred from each event is the polar angle of
(x,y), namely,

f*5fLO2arctanS yxD , ~25!

where arctan is evaluated between2p andp, taking into
account the individual signs ofx and y. In this wayf* is
defined in a 2p window, and there is no need to know the
amplitudeu^a&u[uau of the input field. The phase distribu-
tion is the marginal distribution of~24! integrated over the
radius

m~f* ;fLO ;f!5E
0

`

drrw„r cos~fLO2f* !,r sin~fLO2f* !;fLO ;f…. ~26!

Substituting Eqs.~1!–~3! and ~24! into Eq. ~26! we obtain

m~f* ;fLO ;f!5
exp@2n~fLO2f!#

4pD~fLO2f!D~fLO2f1p/2!k~fLO2f* ;fLO2f!

3„11et2~fLO2f
*
;fLO2f!Apt~fLO2f* ;fLO2f!

3$11 erf@t~fLO2f* ;fLO2f!#%…, ~27!

where

k~w* ;w!5
1

2 F cos2w*
D2~w1p/2!

1
sin2w*
D2~w! G , ~28!

n~w!5
uau2

2 F cos2w

D2~w1p/2!
1

sin2w

D2~w!G , ~29!

t~w* ;w!5
uau
2 F sinw* cosw

D2~w1p/2!
1
cosw* sinw

D2~w! G 1

Ak~w* ;w!
.

~30!

The above distribution is very narrow and centered in
f*5f for fLO5f, whereas it shifts and rapidly broadens
for fLO different fromf. In Fig. 8 we report the distribution
m(f* ;fLO ;f) of a squeezed state withf50 and for dif-
ferent values offLO and sinh

2r50.05̂ n̂& ~only a few percent
of squeezing is needed, see Refs.@8#!.

For fLO5f ~i.e., when we measure exactly the two
quadratures corresponding to principal squeezing axes! the
factorized distribution~24! coincides with the Wigner func-
tionW0(a,ā) of the input field, namely,

w~x,y;f;f![W0~x1 iy ,x2 iy !

5
1

2ps1s2
expF2

~x2uau!2

2s1
2 2

y2

2s2
2G ,

~31!
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where

s1
25

1

4
e2r , s2

25
1

4
e22r . ~32!

However,f is just the quantity that we want to measure, and
we need a feedback loop as in Eq.~7! in order to adjust
fLO .

The uncertainties in Eq.~32! are the true intrinsic quan-
tum uncertainties of the squeezed state: no additional noise
has been added by the measurement, as for the 3 dB added
noise of joint measurement. The absence of added noise re-
sults from independence of the two homodyne measure-
ments. One should stress, however, that the price to pay here
is the need of twice the number of measurements with re-
spect to the joint measurements case~see also note@10#!.

A. Feedback-assisted measurements

The feedback mechanism~7! acts in the two-quadrature
scheme in a way similar to the single-quadrature one. One
has the unconditioned probability distribution in the complex
plane

w~N!~x,y;f!5E
2p

p

dfLOw~x,y;fLO ;f!pLO
~N!~fLO ;f!,

~33!

and the unconditioned marginal phase probability afterN
steps is given by a convolution analogous to~10!,

m~N!~f* ;f!5E
2p

p

dfLOm~f* ;fLO ;f!pLO
~N!~fLO ;f!,

~34!

with m(f* ;fLO ;f) given by Eq.~26!. Similarly, the LO
phase shift probability afterN feedback adjustments is given
by

pLO
~N!~fLO ;f!5E

2p

p df*
12l

mS f* ;
fLO2lf*

12l
;f D

pLO
~N21!S fLO2lf*

12l
;f D . ~35!

In Fig. 9, we report the results of a Monte Carlo simulation
of the feedback-assisted evolution of the unconditioned dis-
tribution w(N)(x,y;f) for f50 and for initial distribution
pLO
(0)(fLO ;f) set at random. At the beginning the distribution

w(1)(x,y;f) is very delocalized in the complex plane,
with a ring shape around the origin, corresponding to no
information on the phase. During the evolution, the
distribution shrinks approaching the limiting distribution
W0(x1 iy ,x2 iy) after a sufficiently high numberN of steps.
In order to check convergence of the distribution in the com-
plex plane, we evaluate the varianceDy at each step, and we
find that after a sufficiently large number of stepsDy con-
verges to a stationary valueDy5g(l)e2r . For the Wigner
function one hasDy51/2e2r , whereas in practiceg(l) is
larger than 1/2, reflecting the noise added by the feedback.
The behavior ofg(l) is also reported in Fig. 9. It is close to
1/2 for a wide range of values ofl, showing that feedback
adds a very low noise. Forl→0 the noise vanishes: how-
ever, the smaller isl, the greater is the numberN* of steps
needed to reach the steady state.

In Fig. 10, the corresponding marginal phase distribution
m(N)(f* ;f) is reported. This starts with a central peak in
the middle of high and broad tails, it narrows during the

FIG. 8. Marginal phase distributionm(f* ;fLO ;f) for two-
quadrature homodyne detection with input squeezed state with
^n̂&51000 and squeezing photons sinh2r50.05. Both signal and
squeezing phases are set to zero. The distributions for three differ-
ent values offLO are reported.

FIG. 9. Evolution of the experimental distribution
w(N)(x,y;f) in the complex plane from a Monte Carlo simulation
of two-quadrature feedback-assisted measurement withl50.2. The
number of data collected in each step is 104. The distributions for
N51,4,12, and 50 are reported. In all plotsf50, ^n̂&51000, and
the number of squeezing photons is set equal to 0.05^n̂&; the local
oscillator phase is initially distributed at random. The lower inset
shows the behavior of the functiong(l) which appears in the sta-
tionary varianceDy5g(l)e2r of thew(N)(x,y;f) distribution.

4502 54D’ARIANO, PARIS, AND SENO



transient, and eventually approaches the steady distribution
in Eq. ~27! for f5fLO after a sufficiently large number of
steps. The phase sensitivity is given bydf*;^n̂&21, with a
proportionality constant which approaches unit for decreas-
ing l ~see also Fig. 11!.

B. Nonefficient detectors

Nonunit quantum efficiencyh of the photodetectors
causes the probability distribution of each measured quadra-
ture to become a Gaussian convolution of the corresponding
distribution for h51. The probability distribution in the
complex plane is given by

wh~x,y;fLO ;f!5ph~x;fLO2p/2;f!ph~y;fLO ;f!,
~36!

where ph(x;fLO ;f) is given in Eq. ~19!. The feedback
mechanism is still effective in the presence of nonefficient
detectors, and the unconditioned distribution

wh
~N!~x,y;f!5E

2p

p

dfLOwh~x,y;fLO ;f!pLO
~N!~fLO ;f!

~37!

reaches a stationary distribution after a numberN* of steps
~which is almost the same as forh51). The limiting distri-
bution is now given by a generalized Wigner function@13#

wh~x,y;f;f![Ws~x1 iy ,x2 iy !

5
1

2ps1s2
expF2

~x2uau!2

2s1
2 2

y2

2s2
2G ,

~38!

with

s1
25

1

4
~e2r2s!, s2

25
1

4
~e22r2s!, ~39!

where the ordering parameters is given bys512h21: this
distribution is broader thanW0(x1 iy ,x2 iy), and is given
by the Gaussian convolution ofW0,

W12h21~a,ā !5E
C

d2b

p@~12h!/h#
W0~b,b̄ !

3expH 2
ua2bu2

~12h!/h J . ~40!

The phase distributionmh
(N)(f* ;f) approaches the marginal

phase distribution of Eq.~38! for a sufficiently large number
of steps. For squeezed optimized states with number of pho-
tons limited by the relation

^n&&
1

aopt~12h!
,

whereaopt5sinh2r/^n& is the optimum fraction of squeezing
photons (a;0.05, it meanŝn& up to thousands for efficient
detectorsh>0.9) the phase distribution exhibits a sensitivity

FIG. 10. Evolution of the marginal phase distribution
m(N)(f* ;f) from the same Monte Carlo simulation as in Fig. 9.

FIG. 11. Phase sensitivitydf* versus^n̂& from a Monte Carlo
simulation of feedback-assisted double-homodyne measurements,
for the same values ofh as in Fig. 7. The feedback coupling is
l50.2, and the numberN* of steps used to reach the steady state is
50. The simulation is performed on a state withf50, ^n̂&51000,
sinh2r550, and for 104 data at each step. The lower inset reports the
optimal squeezing fraction relative to each value of the quantum
efficiencyh. The upper curve is forh51. The upper inset reports
the exponentg of the phase sensitivity power lawdf;^n̂&2g as a
function of the quantum efficiencyh for ^n̂& running from 100 to
1000.

54 4503FEEDBACK-ASSISTED HOMODYNE DETECTION OF . . .



which scales asdf;^n̂&2g, where the exponentg is a func-
tion of the quantum efficiency. On the other hand, for larger
^n̂& it can be shown from Eq.~27! that the asymptotic sen-
sitivity is again shot noise limited. However, differently from
the single-quadrature scheme, there is now a large range of
^n̂& where one has only a smooth degradation of the ideal
sensitivity. It is also worth remembering that here only a few
percentage of squeezing photons is needed, whereas for the
one-quadrature scheme it is 50%. In Fig. 11 we report the
phase sensitivity originated from feedback-assisted measure-
ments with different values of the quantum efficiencyh. We
also report the optimal squeezing photon fraction, along with
the behavior of the exponentg as a function ofh in the low
^n̂& region.

IV. CONCLUSION

In this paper we have studied two feedback-assisted de-
tection schemes for the phase shift of a squeezed state of
radiation. Both schemes are based on homodyne detection,
but in one case a single field quadraturex̂f is detected,
whereas in the other each experimental event is a couple of
independent measurements of two conjugated quadratures
x̂f and x̂f2p/2 . The dynamics for both schemes have been
extensively studied numerically, showing that the external
feedback mechanism is very effective, and introduces a neg-
ligible noise for a wide range of the coupling parameter.
Smaller values of the coupling parameter produce a lower
additional noise, however, they need a larger number of steps
to reach the steady state. The case of nonunit efficiency at
photodetectors has also been considered, showing that the
feedback mechanism still works, and is not affected by the
detection noise. The performance of the two schemes in this
realistic situation has been analyzed in detail.

In the single-quadrature scheme the resulting phase sensi-

tivity is given by the power lawdf*5C(l)/^n̂& versus the
input energŷ n̂&, whereC(l) is less than unit forl,1, and

achieves the minimum valueC(l)5 1
2 for l→0. Hence the

feedback-assisted measurement exhibits the ideal sensitivity,
apart from a proportionality constant. When nonefficient de-
tectors are involved, the feedback control is still effective,
however, it cannot clean out the extra noise due to quantum
efficiency: in this case the phase sensitivity dramatically de-
grades, and becomes shot noise limited for^n̂&*(12h)21.
This difficulty can be partially overcome by means of the
second scheme, which is based on couples of homodyne
measurements. Here the feedback drives the joint probability
distribution of two quadratures towards the Wigner function
W0(a,ā) of the input state, and it is effective for a wide
range of the coupling parameter. The corresponding mar-
ginal phase distribution exhibits an ideal sensitivity apart
from a proportionality constant, which is affected by the
feedback noise. When nonefficient detectors are involved,
the probability distribution of the two quadratures becomes
broadened, and approaches the Wigner function
W12h21(a,ā) after a sufficiently large number of steps. The
marginal phase distribution has a sensitivitydf;^n̂&2g. For
not too large number of photons the exponentg is not far
from unit for a broad range of the quantum efficiencyh. The
states which achieve this optimal sensitivity require only a
few percent of photons engaged in squeezing, and this frac-
tion decreases for decreasingh. Therefore we conclude that
the two-quadrature scheme can be used in practice to im-
prove the phase sensitivity, and we propose it for experimen-
tal investigations.
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