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Bit commitment protocols, whose security is based on the laws of quantum mechanics alone, are
generally held to be impossible on the basis of a concealment–bindingness tradeoff (Lo and Chau,
1997 [1], Mayers, 1997 [2]). A strengthened and explicit impossibility proof has been given in D’Ariano
et al. (2007) [3] in the Heisenberg picture and in a C∗-algebraic framework, considering all conceivable
protocols in which both classical and quantum information is exchanged. In the present Letter we provide
a new impossibility proof in the Schrödinger picture, greatly simplifying the classification of protocols and
strategies using the mathematical formulation in terms of quantum combs (Chiribella et al., 2008 [4]),
with each single-party strategy represented by a conditioned comb. We prove that assuming a stronger
notion of concealment—for each classical communication history, not in average—allows Alice’s cheat
to pass also the worst-case Bob’s test. The present approach allows us to restate the concealment–
bindingness tradeoff in terms of the continuity of dilations of probabilistic quantum combs with the
metric given by the comb discriminability-distance.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

The bit commitment protocol involves two mistrustful parties—
Alice and Bob—of which Alice submits to Bob a piece of evidence
to be used to confirm a bit value which she will later reveal to
Bob, while Bob cannot determine the bit value from the evidence
alone. A good bit commitment protocol should be simultaneously
concealing and binding, namely the evidence should be submitted
to Bob in such a way that he has (almost) no chance to iden-
tify the committed bit value before Alice later decodes it for him,
whereas Alice has (almost) no way of changing the value of the
committed bit once she has submitted the evidence. In the easiest
example to illustrate bit commitment, Alice writes the bit down
on a piece of paper, which is then locked in a safe and sent to
Bob, whereas Alice keeps the key. At a later time, she will unveil
the bit by handing over the key to Bob. However, Bob may be able

* Corresponding author at: QUIT group, Dipartimento di Fisica, via Bassi 6, 27100
Pavia, Italy.

E-mail addresses: gchiribella@mail.tsinghua.edu.cn (G. Chiribella),
dariano@unipv.it (G.M. D’Ariano), paolo.perinotti@unipv.it (P. Perinotti),
d.schlingemann@tu-bs.de (D. Schlingemann), Reinhard.Werner@itp.uni-hannover.de
(R. Werner).

1 http://www.quantummechanics.it.

to open the safe in the meantime, and this scheme is in principle
insecure. Yet all bit commitment schemes currently used rely on
strongboxes and keys made of computations that are (supposedly)
hard to perform (see Ref. [3] for a list of references), and cryp-
tographers have long known that bit commitment (like any other
interesting two-party cryptographic primitive) cannot be securely
implemented with classical information [5].

Besides having immediate practical applications, bit commit-
ment is also a very powerful cryptographic primitive. Conceived
by Blum [6] as a building block for secure coin tossing, it also al-
lows to implement secure oblivious transfer [7–9], which, in turn,
is sufficient to establish secure two-party computation [5,10].

It has therefore been a long-time challenge for quantum cryp-
tographers to find unconditionally secure quantum bit commitment
protocols, in which—very much in parallel to quantum key dis-
tribution [11,12]—security is guaranteed by the laws of quantum
physics alone.

The first quantum bit commitment protocol appeared in the
famous Bennett and Brassard 1984 quantum cryptography pa-
per [11], in a version for implementing coin tossing. However, they
also proved that Alice can cheat using EPR correlations, by which
she can unveil either bit at the opening stage by measuring in
the appropriate basis a particle entangled with the one encoding
the bit, whereas Bob has no way to detect the attack. Subsequent
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proposals for bit commitment schemes tried to evade this type of
attack, e.g. in the protocol of Ref. [13] which for a while was gen-
erally accepted to be unconditionally secure.

In 1996 Lo and Chau [1], and Mayers [2] realized that all pre-
viously proposed bit commitment protocols were vulnerable to
a generalized version of the EPR attack that renders the [11] pro-
posal insecure, a result that they slightly extended to cover quan-
tum bit commitment protocols in general. Their basic argument
is the following. At the end of the commitment phase, Bob will
hold one out of two quantum states !k as proof of Alice’s com-
mitment to the bit value k ∈ {0,1}. Alice holds its purification ψk ,
which she will later pass on to Bob to unveil. For the protocol to be
concealing, the two states !k should be (almost) indistinguishable,
!0 ≈ !1. But Uhlmann’s theorem [14] then implies the existence
of a unitary transformation U that (nearly) rotates the purifica-
tion of !0 into the purification of !1. Since U is localized on the
purifying system only, which is entirely under Alice’s control, Lo–
Chau–Mayers argue that Alice can switch at will between the two
states, and is not in any way bound to her commitment. As a con-
sequence, any concealing bit commitment protocol is argued to be
necessarily non-binding (these results still hold true when both
parties are restricted by superselection rules [15]). So while the
proposed quantum bit commitment protocols offer good practical
security on the grounds that Alice’s EPR attack is hard to perform
with current technology, none of them is unconditionally secure.

Starting from 2000 the Lo–Chau–Mayers no-go theorem [1,2]
has been continually challenged by Yuen and others [16–18], ar-
guing that the impossibility proof or Ref. [1] does not exhaust
all conceivable quantum bit commitment protocols, whereas it
is still unclear if Mayer’s framework [2] is complete. Spekkens
and Rudolph [19] extended the no-go theorem with quantitative
bounds (which can be saturated) on the degree of concealment and
bindingness that can be achieved simultaneously in any bit com-
mitment protocol. This impossibility proof is complete for all pro-
tocols that do not use classical communication, whence involving
strategies that can be completely purified.2 The protocols that have
been claimed to circumvent the no-go theorem [16] strengthen
Bob’s position with the help of ‘secret parameters’ or ‘anonymous
states’, so that Alice lacks some information needed to cheat suc-
cessfully: while Uhlmann’s theorem would still imply the existence
of a unitary cheating transformation as described above, this trans-
formation might be unknown to Alice.

The above attempts to build up a secure quantum bit commit-
ment protocol have motivated the thorough analysis of Ref. [3],
which provided a strengthened and explicit impossibility proof
exhausting all conceivable protocols in which not only quantum
information, but also classical information (i.e. publicly known) is
exchanged between the two parties, including the possibility of
protocol aborts and resets. The proof [3] encompasses protocols
even with unbounded number of communication rounds (it is only
required that the expected number of rounds is finite), and with
quantum systems on infinite-dimensional Hilbert spaces. However,
the considerable length of the proof in Ref. [3] makes it still hard
to follow (see e.g. comments in Ref. [17]), lacking a synthetic intu-
ition of the impossibility proof.

The debate can be only settled with an appropriate formulation
of the problem, which is sufficiently powerful to include all possi-
ble protocols in a single simple mathematical object, thus leaving
no shadow of doubt on the completeness of the protocol classifica-
tion. Once the mathematical formulation of all protocols is settled,

2 Notice that here the term strategy simply refers to a choice of parameters and
actions that are allowed by the protocol (honest strategy) or not (dishonest strat-
egy). This terminology is quite standard in cryptography literature, and should not
be interpreted in a game-theoretical fashion.

Fig. 1. Illustration of the diagrammatic representation of quantum combs. For
a quantum comb each line entering or exiting a comb tooth represents a quantum
system, while for a conditioned comb it represents a hybrid quantum–classical sys-
tem. A quantum operation (the box on the left corner) is a special case of quantum
comb with a single tooth.

Fig. 2. A two-party protocol in which classical and quantum information are ex-
changed assigns the set of allowed conditioned combs, along with the pertaining
input–output structure. A conditioned comb is a collection of quantum combs la-
beled by histories of classical communication, each quantum comb representing
a specific sequence of single-party moves for a particular classical history. Each
tooth of a comb corresponds to a single turn of the protocol, the last one repre-
senting the last turn in the commitment phase. For histories ending in a successful
commitment, at the opening Bob performs a joint measurement on all the systems
available to him. Combining Bob’s comb before the opening with this final measure-
ment yields a special case of quantum comb—the so-called quantum tester—whose
output is the committed bit value. In this framework, Alice’s comb plays the role of
a “state” encoding the bit value, whereas Bob’s tester plays the role of a “POVM” for
binary discrimination. Such binary discrimination—prescribed by the protocol at its
end—should not be confused with Bob’s attempts to discriminate Alice’s strategies
before the opening, whose outcomes can be included in the classical information
history.

then the impossibility statement becomes just a mathematical the-
orem. In this Letter we will first see that the appropriate notion to
describe all individual strategies in a purely quantum protocol is
the quantum comb. The quantum comb generalizes the notion of
quantum operation of Kraus [20], and has been originally intro-
duced in Ref. [4] to describe quantum circuit boards, where inputs
and outputs are not just quantum states, but quantum operations
themselves. Since quantum combs are in one-to-one correspon-
dence with sequences of quantum operations [4,21], a quantum
comb is suited to represent the sequence of moves performed
by a party in a multi-round quantum protocol. Indeed, the same
mathematical structure of quantum combs has been recognized
by Gutoski and Watrous in Ref. [22] as the appropriate formu-
lation of multi-round quantum games. In order to treat proto-
cols that involve both quantum and classical communication, we
will then extend this framework by introducing the concept of
conditioned comb, which describes a computing network that is
able to sequentially process both quantum and classical informa-
tion.

Examples of combs are represented diagrammatically in Fig. 1.
For a purely quantum comb, each line entering or exiting a tooth of
the comb represents a quantum system. For a conditioned comb,
each line represents a hybrid quantum–classical system, account-
ing also for classical information exchanged at each step. In a two-
party protocol, a comb represents a single-party strategy, with
each tooth of the comb representing the move performed by the
party at some turn. Subsequent turns are represented by subse-
quent teeth, from left to right. The output of the multi-round
protocol is given by two combs interlaced as in Fig. 2—the up-
per Bob’s, the lower Alice’s. The exchange of quantum–classical
systems can be mathematically described in a C∗-algebraic repre-
sentation of a deterministic comb, or, equivalently, by treating the
conditioned comb as a collection of (purely quantum) probabilistic
combs, each of them being labeled by a particular history of classi-
cal communication. In this Letter, we will choose the second point
of view, which avoids using the C∗-algebraic framework, with the
need, however, of considering collections of probabilistic quantum
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combs, accounting for the classical information coming from mea-
surements.

A protocol assigns the set of allowed strategies, i.e. the set of al-
lowed conditioned combs, along with the pertaining input–output
structure regulating the exchange of quantum and classical infor-
mation. As already mentioned, a conditioned comb is a collection
of probabilistic quantum combs, each of them representing the se-
quence of single-party moves associated to a particular history of
classical communication. In a general protocol, some histories will
lead to a successful commitment, while some other will possibly
lead to an abortion, in which the two parties irrevocably give up,
excluding any further communication (if the protocol is restarted,
then the concatenation of the two sequences can be regarded as
part of a new longer protocol with possible resets). Accordingly,
we will consider histories from the beginning to the end of the
commitment (which can be either successful or not), i.e. excluding
the opening. Each tooth of a comb corresponds to a single turn of
the protocol, and, in the case of successful commitment, the last
tooth represents the last turn before the opening.

For histories that end in a successful commitment, in the open-
ing Alice will send to Bob a classical message along with a set of
ancillae prescribed by the protocol, and, Bob will perform a suit-
able joint measurement on all quantum systems available to him,
as in Fig. 2. The combination of Bob’s comb (up to the opening)
with the final measurement at the opening is itself a special case
of quantum comb—the so-called quantum tester—whose output is
the committed bit value. In this framework, Alice’s comb plays
the role of a “state” encoding the bit value, whereas Bob’s tester
plays the role of a “POVM” for binary discrimination. Such binary
discrimination—prescribed by the protocol at its end—should not
be confused with Bob’s attempts to discriminate Alice’s strategies
before the opening, whose outcomes can be included in the classi-
cal information history. We will see that the fact that the protocol
has many rounds actually can help Bob in discriminating between
different Alice’s strategies. Thus, the probability of Bob cheating—
which in a protocol with a single Bob–Alice–Bob round would
be represented by the CB-norm distance between channels—here
is replaced by the comb distance [23], which is larger than the
CB-norm, since Bob can exploit the memory structure of Alice’s
strategy.

In the following we will consider the concealment–bindingness
tradeoff for any possible history of classical information exchanged
within the protocol. This will allow us to restate the tradeoff in
terms of a mathematical theorem assessing the continuity of di-
lations of probabilistic quantum combs with the norm given de-
fined in terms of the comb discriminability-distance. The dilation
theorem shows that any probabilistic combs can be dilated to
a single contraction V (i.e. V † V 6 I), upon introducing some ad-
ditional ancillae. As a consequence, the impossibility proof will
run essentially as follows. At the end of the commitment phase
(which is located just before the last teeth of both parties) Bob
sees one out of two possible Alice’s strategies that are (almost)
indistinguishable. Instead, at the opening, the two dilated strate-
gies of Alice corresponding to the two values of the committed
bit are (almost) perfectly discriminable. As a consequence of in-
distinguishability up to the commitment phase, Alice can choose
between the two strategies by performing a unitary transforma-
tion on the ancilla in the last tooth of her comb. Therefore, one
has (almost) perfect opening, and, at the same time, Alice can
cheat perfectly. The concealment–bindingness tradeoff is thus re-
duced to the continuity of the dilation of probabilistic combs in
terms of their discriminability-distance. In the present Letter we
will restrict to finite-dimensional protocols, with finite-number of
rounds. The last assumption does not introduce any practical lim-
itation, since, in the real world one needs to put a bound anyway
to the lapse of time needed for the commitment. We will anyway

discuss also protocols with unbounded number of rounds in the
concluding section.

Before starting the main sections of the Letter, we want to com-
pare the present approach with that of the previous impossibility
proof in Ref. [28]. Ref. [28] treats the strategies as the preparation
of a quantum register, and classical and quantum communications
are described in the Heisenberg picture in the field framework of
C∗-algebras. In the present approach the C∗-algebraic framework
is avoided, by treating classical histories as labels for sequences of
quantum operations in the Schrödinger picture, and strategies are
identified with conditioned quantum combs, which provide a di-
rect mathematical formulation of the causal structure of the strat-
egy. At this level the two approaches are fully equivalent. There
are, however, conceptual differences, for which the two approaches
are not equivalent. The most relevant difference is the notion of
security, which in the present treatment is taken at the strongest
level, i.e. worst-case over all classical histories, whereas in Ref. [28]
security was defined in average. The present notion of security is
cryptographically the strongest and indeed the true practical one,
corresponding to a priceless commitment bit, as already stressed
in Refs. [16,17]. Another important difference between the present
approach and that of Ref. [28] is a more general impossibility
proof, in which one can restrict the set of possible Bob’s opera-
tions, even though he can always purify (i.e. the set is a convex set
closed under dilations). This makes the impossibility proof more
general, including the case of a Bob constrained by a checking Al-
ice.

The Letter is organized as follows. In Section 2 we review
the definition and the main features of a quantum protocol for
bit commitment, giving its mathematical formulation in terms
of quantum combs, and defining what a successful bit commit-
ment protocol would have to achieve. The analysis will be based
solely on the principles of quantum mechanics, including classical
physics, but not including relativistic constraints, which are known
to facilitate secure bit commitment [24,25]. In Section 3 we will
briefly recall the prerequisites about quantum combs, including
the notion of quantum tester, the comb distance, and we pro-
vide the generalized Stinespring dilation theorem for probabilistic
combs, along with a continuity theorem for the comb distance. In
Section 4 we review the quantum bit commitment protocol, and
present its mathematical formulation in terms of quantum combs,
restating the impossibility theorem by means of a continuity theo-
rem for the generalized Stinespring dilation of probabilistic combs
versus their comb distance. Section 6 concludes the Letter with
some comments and a summary of the main results.

2. What is a protocol

A protocol regulates the exchange of messages between Alice
and Bob, such that at every stage it is clear what type of mes-
sage is expected from the participants, although, of course, their
content is not fixed. The expected message types can be either
classical or quantum or a combination thereof, with the number of
distinguishable classical signals and the dimension of the Hilbert
spaces fixed. The number of classical states and the dimension of
the Hilbert spaces can depend on classical information generated
previously.

2.1. Phases of the protocol

In any commitment scheme, we can distinguish two main
phases. The first is the commitment phase, in which Alice and Bob
exchange classical and quantum messages in order to commit the
bit. Eventually, this phase can end either with a successful commit-
ment, or with an abort, in which the two party irrevocably give up
the purpose of committing the bit (of course, in a well-designed
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Fig. 3. The bit commitment protocol is two-party only, and trusted third parties are
not allowed. Here in figure trusted rounded portions represent examples of third
parties, e.g. the left one could be a trusted joint state, and the right one a trusted
joint measurement. Another example of third party could be a third comb interlaced
with Alice’s and Bob’s.

protocol, the probability of abort should be vanishingly small).
If no abort took place, the bit value is considered to be committed
to Bob but, supposedly, concealed from him. Since bit commitment
is a two-party protocol and trusted third parties are not allowed,
the starting state necessarily has to be originated by one of the two
parties (see also Fig. 3). Moreover, since we can always include in
the protocol null steps (in which no information, classical or quan-
tum, is exchanged), without loss of generality, we can restrict our
attention to protocols that are started by Bob.

The second phase is the opening phase. In the case of abort
during the commitment, this is just a null step, whereas, in the
case of successful commitment, at the opening Alice will send to
Bob some classical or quantum information in order to reveal the
bit value. Taking both Alice’s message and his own (classical and
quantum) records, Bob will then perform a suitable verification
measurement. His measurement will result in either a successful
readout of the committed bit, or in a failure, e.g. due to the detec-
tion of an attempted cheat. Again, in a well-designed protocol the
probability of failure should be vanishingly small.

2.2. Conditions on successful protocols

In the following we will denote by a0 and a1 two honest strate-
gies corresponding to the two bit values 0 and 1, respectively. We
call a protocol ε-concealing, if, conditioned by any history of clas-
sical communication, Bob cannot distinguish between the strate-
gies a0 and a1 (up to an error ε) before Alice opens the com-
mitment. In general, of course, the probability of a given history
of classical communication depends on whether Alice chooses a0
or a1. Since this dependence can be exploited by Bob to infer the
bit value, we must require that, no matter what strategy b Bob
uses, the conditioned probability of a0 given history s never dif-
fers from the probability of a1 given history s by more than ε.
Note that this requirement must by satisfied even by histories that
end up in an abort, otherwise, by the sole fact that the protocol
aborted Bob could reliably infer the value of the bit.

We say that an Alice’s strategy a$ is δ-close to a if, condi-
tioned by any history of classical communication, Bob cannot dis-
tinguish a from a$ (up to an error δ) at any time, including the
opening phase. Given two honest strategies a0 and a1, a δ-cheating
is a pair of strategies a$

0 and a$
1, with the properties that (i) a$

i is

δ-close to ai for i = 0,1 and (ii) Alice can turn a$
0 into a$

1 with
a local operation on her ancillae after the end of the commit-
ment phase. In other words, the strategies a$

0 and a$
1 are the same

throughout the commitment phase, and differ only by a local op-
eration carried out before the opening. If no δ-cheating strategy
exists for Alice, we call the protocol δ-binding.

3. Prerequisites on quantum combs

Here we briefly summarize the formalism of quantum combs
and few related results.

Fig. 4. N-comb: sequential network of N quantum operations with memory. The
network contains input and output systems (free wires in the diagram), as well as
internal memories (wires connecting the boxes).

3.1. Choi–Jamiołkowski operators and link product

A quantum operation (trace non-increasing CP-map) C from
states on Hi to states on H j is described by its Choi–Jamiołkowski
operator

C = (C ⊗ Ii)
(
|Ii〉〉〈〈Ii|

)
∈ Lin(H j ⊗Hi), (1)

where Ii is the identity map on Hi , and |Ii〉〉 ∈H⊗2
i is the max-

imally entangled vector |Ii〉〉 = ∑
n |n〉|n〉. By Choi’s theorem, the

map C is CP if and only if the Choi–Jamiołkowski operator is posi-
tive (semidefinite). In general, we will often exploit the one-to-one
correspondence between bipartite states in |F 〉〉 ∈H j ⊗Hi and op-
erators F from Hi to H j given by

|F 〉〉 = (F ⊗ Ii)|Ii〉〉, (2)

and the useful relation

(F ⊗ Ii)|Ii〉〉 =
(

I j ⊗ F τ )
|I j〉〉, (3)

F τ denoting the transpose of F with respect to the orthonormal
basis {|n〉}. If C is a quantum operation from Hi to H j and D is
a quantum operation from H j to Hk , the Choi–Jamiołkowski oper-
ator of the quantum operation DC , from Hi to Hk , resulting from
the connection of C and D is given by the link product [4]

D ∗ C := Tr j
[
(D ⊗ Ii)

(
Ik ⊗ Cτ j

)]
, (4)

Tr j and τ j denoting partial trace and partial transpose on H j , re-
spectively. A quantum operation C is trace-preserving (i.e. it is
a channel) if and only if it satisfies the normalization condition

I j ∗ C ≡ Tr j[C] = Ii . (5)

Viewing quantum states as a special kind of channels (with one-
dimensional input space), Eq. (4) yields

C (ρ) = C ∗ ρ = Tri
[
C
(

I j ⊗ ρτ )]
. (6)

3.2. Quantum combs

A quantum comb describes a sequential network of N quantum
operations with memory (Ck)

N−1
k=0 , with N − 1 open slots in which

variable quantum operations can be inserted, as in Fig. 4. The comb
is in one-to-one correspondence with the Choi–Jamiołkowski oper-
ator R of the network, which can be computed as the link product
of the Choi–Jamiołkowski operators (Ck)

N−1
k=0 :

R := CN−1 ∗ · · · ∗ C0. (7)

Labeling the input (output) spaces of Ck as H2k (H2k+1), we have
that R is a non-negative operator on

⊗2N−1
j=0 H j .

For networks of channels the operator R has to satisfy the re-
cursive normalization condition [4,22]

Tr2k−1
[

R(k)
]
= I2k−2 ⊗ R(k−1), k = 1, . . . , N, (8)

where R(N) := R , R(k) ∈ Lin(
⊗2k−1

j=0 H j), and R(0) = 1. Moreover,
one has the characterization [4,21]
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Theorem 1. Any positive operator R satisfying Eq. (8) is the Choi–
Jamiołkowski operator of a network of N channels. Any positive oper-
ator R ′ such that R ′ 6 R is the Choi–Jamiołkowski operator of a network
of N quantum operations.

We call a quantum comb R satisfying Eq. (8) deterministic, and
a comb R ′ 6 R probabilistic.

3.3. Dilation of quantum combs

By the Stinespring–Kraus–Ozawa theorem [26,20,27], any quan-
tum operation C from states on Hi to H j can be dilated to an iso-
metric map followed by a post-selection on an ancilla

C (ρ) = TrA
[
(I ⊗ P A)V ρV †]

= TrA
[

KρK †], K = (I ⊗ P A)V , (9)

with V isometry from Hi to H j ⊗HA , and P A orthogonal projector
on the Hilbert space HA of the ancilla.

We refer to the single-Kraus map

C̃ (ρ) := KρK † (10)

as to a dilation of the quantum operation C . In terms of Choi–
Jamiołkowski operators, one has

C = TrA [̃C ] ∈ Lin(H j ⊗Hi), (11)

where C̃ = |K 〉〉〈〈K | is the Choi–Jamiołkowski operator of the dila-
tion. A (minimal) dilation of the quantum operation C has ancilla
space HA * Supp(C) ⊆H j ⊗Hi :=Hi j , and Choi–Jamiołkowski op-
erator

C̃ =
∣∣C

1
2
〉〉〈〈

C
1
2
∣∣ ∈ Lin(Hi j ⊗HA). (12)

In particular, when the quantum operation is a quantum channel
also its dilation is a channel—C̃ (ρ) = V ρV †, V isometry—with the
Choi–Jamiołkowski operator satisfying the normalization condition
TrA, j [̃C] = Ii .

Since a quantum comb R ∈ Lin(H) with H= ⊗2N−1
j=0 H j repre-

sents a sequential network of quantum operations, one can always
obtain a dilation of the comb by dilating each quantum operation
in the network. A useful dilation of R is given by

R̃ =
∣∣R

1
2
〉〉〈〈

R
1
2
∣∣ ∈ Lin(H⊗HA), (13)

where HA * Supp(R). The dilation R̃ has the following interpreta-
tion: R̃ is a quantum comb acting on the Hilbert spaces (H̃ j)

2N−1
j=0 ,

where H̃2N−1 :=H2N−1 ⊗HA , and H̃k =Hk for k < 2N −1. There-
fore, it represents a network of quantum operations with mem-
ory. Tracing out the ancilla space HA in the output H̃2N−1 =
H2N−1 ⊗HA of the last quantum operation C̃N−1, one then ob-
tains back the original network

R = TrA[R̃]. (14)

For quantum states it is known that the purification is unique up
to partial isometries on the ancilla spaces. For quantum combs one
has the straightforward extension:

Proposition 1. If R̃ and R̃ ′ are two dilations of the quantum comb R,
i.e. R̃ and R̃ ′ are both non-negative rank-one operators such that

TrA[R̃] = TrA′
[

R̃ ′], (15)

then there exists a partial isometry W from A to A′ such that

R̃ ′ = (I ⊗ W )R̃
(

I ⊗ W †),

R̃ =
(

I ⊗ W †)R̃ ′(I ⊗ W ), (16)

I denoting the identity on H= ⊗2N−1
j=0 H j .

Fig. 5. Testing a network of N quantum operations (Ck)
N−1
k=0 . The tester con-

sists in the preparation of an input state ρ0, followed by quantum operations
{D1, . . . ,DN−1}, and a final measurement {Pi}.

For the application to bit commitment it is crucial to note that
all dilations of a comb can be obtained by just applying a partial
isometry W on the last output system. An obvious consequence of
the above fact is:

Corollary 1. If R̃ and R̃ ′ are two dilations of the quantum comb R, then
there exist two quantum channels E from states onHA to states onHA′

and F from states on HA′ to states on HA such that

R̃ ′ = (I ⊗ E )(R̃) = E ∗ R̃,

R̃ = (I ⊗ F )
(

R̃ ′) = F ∗ R̃ ′, (17)

I denoting the identity map on H = ⊗2N−1
j=0 H j , E and F being the

Choi–Jamiołkowski operators of the channels E and F , respectively.

This means that one can switch from one dilation to another
just by performing some physical transformation on the ancilla in
the last output system of the quantum network. As we will see
in the following, in a bit commitment protocol this implies that
Alice can delay her choice of the bit to the last moment before the
opening.

3.4. Quantum testers

A tester represents a quantum network starting with a state
preparation and finishing with a measurement. When such a net-
work is connected to a network of N quantum operations as in
Fig. 5, the output is a measurement outcome i with probabil-
ity pi . In a bit commitment protocol, a dishonest Bob will perform
a tester to distinguish Alice’s strategies before the opening.

Mathematically, the tester is the collection of Choi–Jamioł-
kowski operators {Ti} given by

Ti := Pi ∗ DN−1 ∗ · · · ∗ D1 ∗ ρ0, (18)

where (Dk)
N−1
k=1 are the Choi–Jamiołkowski operators of the quan-

tum operations (Dk)
N−1
k=1 in Fig. 5. If the sum over all outcomes

T = ∑
i T i is a deterministic comb, we call the tester as normal-

ized.
When the tester is connected to a quantum network R , the

probability of the outcome i is

pi = Ti ∗ R = Tr
[
T τ

i R
]
, (19)

which is nothing but the Born rule, for quantum networks rather
than states. Notice that one can include the transpose in the defi-
nition of the tester, thus getting the familiar form of the Born rule
pi = Tr[Ti R]. However, here we preferred to write probabilities in
terms of the combs R and Ti of the measured and measuring
networks, respectively, thus making explicit that the Born rule is
nothing but a particular case of link product, the transpose ap-
pearing as the signature of the linking of two networks.

For a deterministic comb R and a normalized tester {Ti} one
has the normalization of the total probability:
∑

i

pi =
∑

i

Tr
[
T τ

i R
]
= 1. (20)
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In general, if one considers sub-normalized testers, one has
∑

i

pi =
∑

i

Tr
[
T τ

i R
]
= p 6 1. (21)

In the following we will call T = ∑
i T i tester operator.

Proposition 2 (Decomposition of testers [23]). Let T = ∑
i T i be the

tester operator of the quantum tester {Ti}. Let HB be the ancilla space
HB * Supp(T ), and T̃ be the dilation given by

T̃ =
∣∣T

1
2
〉〉〈〈

T
1
2
∣∣ ∈ Lin(H⊗HB). (22)

Then, one has the identity

T̃ ∗ R =
[
T τ ] 1

2 R
[
T τ ] 1

2 . (23)

Moreover, the probabilities of outcomes pi = Ti ∗ R are given by

pi = Pi ∗ T̃ ∗ R, (24)

where {Pi} is the POVM on HB defined by

Pi = T − 1
2 Ti T

− 1
2 , (25)

T −1/2 being the inverse of T 1/2 on its support.

Proof. Checking Eq. (23) is immediate using Eq. (3)

T̃ ∗ R = TrH
[(

Rτ ⊗ I B
)∣∣T

1
2
〉〉〈〈

T
1
2
∣∣]

=
[
T τ ] 1

2 R
[
T τ ] 1

2 . (26)

Regarding Eq. (24), one has pi = Ti ∗ R = Tr[T τ
i R] =

Tr[[T τ ] 1
2 P τ

i [T τ ] 1
2 R] = Tr[P τ

i (T̃ ∗ R)] = Pi ∗ T̃ ∗ R . !

The interpretation of the above result is the following realiza-
tion scheme for the tester {Ti}:

• realize the quantum network T̃ and connect it with the mea-
sured network R;

• conditionally on the given history of classical information cor-
responding to T̃ , perform the POVM {Pi} on the ancilla state
ρ = T̃ ∗ R .

3.5. Discriminability of combs

Proposition 2 reduces any measurement on quantum network R
to a measurement on a suitable (sub-normalized) state ρ = T̃ ∗ R ,
which is obtained by connecting the input comb R with a suitable
comb T̃ corresponding to the dilation of Eq. (22). In particular, it
reduces the discrimination of two networks R0 and R1 to the dis-
crimination of two output states

ρ(i)
T = T̃ ∗ Ri =

[
T τ ] 1

2 Ri
[
T τ ] 1

2 , i = 0,1. (27)

This allows for the definition of an operational distance between
networks [23], whose meaning is directly related to statistical dis-
criminability

‖R1 − R0‖op := sup
T

∥∥ρ(1)
T − ρ(0)

T

∥∥
1

= sup
T

∥∥T̃ ∗ (R1 − R0)
∥∥

1

= sup
T

∥∥[
T τ ] 1

2 (R1 − R0)
[
T τ ] 1

2
∥∥

1, (28)

where the supremum is taken over the set of all tester operators
T = ∑

i T i , and ‖A‖1 = Tr |A|. Remarkably, the above norm can be

strictly greater than the CB-norm of the difference R1 − R0 of
the two multipartite channels [23]. This means that a sequential
scheme such as that in Fig. 5 can achieve a strictly better discrimi-
nation than a parallel scheme where a multipartite entangled state
is fed in the unknown channel.

In the case in which the tester T and the combs Ri are
probabilistic (namely correspond to networks of quantum op-
erations) the states ρ(i)

T = T̃ ∗ Ri are generally sub-normalized,

i.e. Tr[ρ(i)
T ] 6 1. In this case, the sole fact that the sequences of

quantum operations represented by T and Ri took place helps
in discriminating between R0 and R1. To be concrete, consider
the scenario in which R0 and R1 have flat prior probabilities
π0 = π1 = 1/2. The probability that the sequence of operations
represented by T and Ri takes place is then given by p(T , Ri) =
Tr[ρ(i)

T ]/2. Since this probability depends on i, upon knowing that
the sequence of quantum operations T took place the initial flat
prior must be updated to

π ′
i = p(Ri|T ) = p(T , Ri)

p(T )
= Tr[ρ(i)

T ]
Tr[ρ(0)

T + ρ(1)
T ]

. (29)

The discrimination is now between the two conditional states

ρ̄(i)
T := ρ(i)

T

Tr[ρ(i)
T ]

with prior probability π ′
i , i = 0,1. Therefore, the

maximum success probability is given by

psucc = 1
2

(
1 +

∥∥π ′
0ρ̄

(0)
T − π ′

1ρ̄
(1)
T

∥∥
1

)

= 1
2

(
1 + ‖ρ(0)

T − ρ(1)
T ‖1

Tr[ρ(0)
T + ρ(1)

T ]

)
. (30)

We will conveniently introduce the comb conditional “distance”

d(R1, R0) := sup
T

′ ‖ρ
(1)
T − ρ(0)

T ‖1

Tr[ρ(1)
T + ρ(0)

T ]

= sup
T

′ ‖T̃ ∗ (R1 − R0)‖1

Tr[T̃ ∗ (R1 + R0)]

= sup
T

′ ‖[T τ ] 1
2 (R1 − R0)[T τ ] 1

2 ‖1

Tr[T τ (R1 + R0)]
, (31)

where sup′ (and consistently inf ′) denotes the supremum (infi-
mum) restricted to the tester operators T such that Tr[T τ (R0 +
R1)] > 0. Here we use the expression “distance” in quotation marks
because the quantity d(R1, R0) does not satisfy all the mathemati-
cal properties of a distance: for example, it can be zero even if R1
and R0 do not coincide.

3.5.1. Discriminability with a restricted set of testers
The comb distance quantifies the performances of the best

scheme among all possible sequential schemes one can use to
discriminate between two quantum networks. However, in a bit
commitment protocol the set of schemes that Bob can actually use
for discrimination may be limited by several factors. For example,
Alice could perform random checks during the commitment phase
in order to force Bob to use a quantum network that is close to the
one prescribed by the honest strategy. We will therefore define op-
timal conditional discrimination between R0 and R1 relatively to
a restricted convex set T of tester operators that can actually occur
in the protocol, thus introducing the conditional “distance”

d(R1, R0)|T := sup
T ∈T

′ ‖ρ
(1)
T − ρ(0)

T ‖1

Tr[ρ(1)
T + ρ(0)

T ]

= sup
T ∈T

′ ‖[T τ ] 1
2 (R1 − R0)[T τ ] 1

2 ‖1

Tr[T τ (R1 + R0)]
. (32)
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Lemma 1. The conditional “distance” in Eq. (32) is monotone under the
application of a channel on the output spaces, namely

d
(
(C ⊗ Iin)R1, (C ⊗ Iin)R0

)∣∣
T 6 d(R1, R0)|T. (33)

Proof. Use monotonicity of trace-distance and the fact that the
map C is trace-preserving. !

3.6. Continuity of dilation

We now prove that if two quantum combs R0 and R1 are close
to each other then there exist two dilations R̃0 and R̃1 that are
close with respect to the conditional “distance”. Such continuity
theorem replaces Stinespring’s continuity theorem [28] used in the
previous (C∗-algebraic) impossibility proof of Ref. [3].

Lemma 2 (Continuity of dilation). Let R0, R1 ∈ Lin(H) be two quantum

combs, R̃i = |R
1
2
i 〉〉〈〈R

1
2
i | ∈ Lin(H⊗HA),HA *H be two dilations, and

T ⊆ Lin(H) be an arbitrary convex set of tester operators T . The follow-
ing bound holds

inf
P

d
(

R̃1, (I ⊗P)(R̃0)
)∣∣

T⊗I 6 2
√

d(R0, R1)|T (34)

where T ⊗ I = {T ⊗ I | T ∈ T} and the infimum is taken over the set
of random unitary channels P(ρ) = ∑

k pkUkρU †
k acting on the an-

cilla HA .

Proof. If we define

∆̃Uk := R̃1 − (I ⊗ Uk)R̃0(I ⊗ U †
k)

Tr[(R̃0 + R̃1) ∗ T ] , (35)

we have

inf
P

d
(

R̃1, (I ⊗P)(R̃0)
)∣∣

T⊗I = inf
P

sup
T ∈T

′
∥∥∥∥
∑

k

pk T̃ ∗ ∆̃Uk

∥∥∥∥
1
. (36)

Using the triangular inequality for the trace-norm
∥∥∥∥
∑

k

pk T̃ ∗ ∆̃Uk

∥∥∥∥
1
6

∑

k

pk‖T̃ ∗ ∆̃Uk‖1. (37)

Moreover, exploiting Eq. (23) we can write

‖T̃ ∗ ∆̃Uk‖1 =
∥∥Ψ

(1)
T ,I − Ψ

(0)
T ,Uk

∥∥
1, (38)

where Ψ
(0)
T ,I and Ψ

(1)
T ,Uk

are defined by

Ψ
(i)
T ,C :=

∣∣Ψ (i)
T ,C

〉〉〈〈
Ψ

(i)
T ,C

∣∣,

∣∣Ψ (i)
T ,C

〉〉
:= ([T τ ] 1

2 ⊗ C)|R
1
2
i 〉〉√

Tr[(R0 + R1)T τ ] , (39)

for C ∈ Lin(HA) any contraction. Using the bound
∥∥|ψ〉〈ψ | − |ϕ〉〈ϕ|

∥∥2
1

=
(
‖ψ‖2 + ‖ϕ‖2)2 − 4

∣∣〈ψ |ϕ〉
∣∣2

6
(
‖ψ‖ + ‖ϕ‖

)2(‖ψ‖2 + ‖ϕ‖2 − 2
∣∣〈ψ |ϕ〉

∣∣), (40)

which for ‖ψ‖2 + ‖ϕ‖2 = 1 becomes
∥∥|ψ〉〈ψ | − |ϕ〉〈ϕ|

∥∥2
1 6 2

(
1 − 2

∣∣〈ψ |ϕ〉
∣∣), (41)

we obtain

‖T̃ ∗ ∆̃Uk‖1 6 2
(
1 − 2

∣∣〈〈Ψ (1)
T ,I

∣∣Ψ (0)
T ,Uk

〉〉∣∣) 1
2 . (42)

Then, by Jensen’s inequality we have the following bound

2 inf
P

sup
T ∈T

′ ∑

k

pk
(
1 − 2

∣∣〈〈Ψ (1)
T ,I

∣∣Ψ (0)
T ,Uk

〉〉∣∣) 1
2

6 2 inf
P

sup
T ∈T

′
(

1 − 2
∑

k

pk
∣∣〈〈Ψ (1)

T ,I

∣∣Ψ (0)
T ,Uk

〉〉∣∣
) 1

2

6 2 inf
P

sup
T ∈T

′
(

1 − 2
∣∣∣∣
∑

k

pk
〈〈
Ψ

(1)
T ,I

∣∣Ψ (0)
T ,Uk

〉〉∣∣∣∣

) 1
2

= 2 inf
P

sup
T ∈T

′(1 − 2
∣∣〈〈Ψ (1)

T ,I

∣∣Ψ (0)
T ,C

〉〉∣∣) 1
2

6 2 inf
P

sup
T ∈T

′(1 − 2 Re
〈〈
Ψ

(1)
T ,I

∣∣Ψ (0)
T ,C

〉〉) 1
2 , (43)

where C is the contraction C = ∑
k pkUk . Let us define by C the

convex set of all contractions C = ∑
k pkUk , and define the follow-

ing function on C × T

f (C, T ) := Re
〈〈
Ψ

(1)
T ,I

∣∣Ψ (0)
T ,C

〉〉
. (44)

In Appendix A we use Sion’s minimax theorem of Ref. [29] to prove
the identity

inf
T ∈T

′ sup
C∈C

f (C, T ) = sup
C∈C

inf
T ∈T

′ f (C, T ). (45)

The chain of inequalities proved until now gives

inf
P

d
(

R̃1, (I ⊗P)(R̃0)
)∣∣

T 6 2
(

1 − 2 sup
C

inf
T ∈T

′ f (C, T )
) 1

2

6 2
(

1 − 2 inf
T ∈T

′ sup
C

f (C, T )
) 1

2
(46)

6 2
(

1 − 2 inf
T ∈T

′ sup
U

f (U , T )
) 1

2
, (47)

where we substituted the supremum over contractions C =∑
k pkUk with the supremum over unitaries U , since the function

f (T , C) is linear in C . Moreover, we have

sup
U

f (T , U ) = sup
U

Re
〈〈
Ψ

(0)
T ,I

∣∣I ⊗ U
∣∣Ψ (1)

T ,I

〉〉

= sup
U

〈〈
Ψ

(0)
T ,I

∣∣I ⊗ U
∣∣Ψ (1)

T ,I

〉〉
= F (ρ(1)

T ,ρ(0)
T )

Tr[ρ(1)
T + ρ(0)

T ]
, (48)

where ρ(i)
T , i = 0,1, denote the unnormalized states ρ(i)

T :=
[T τ ] 1

2 Ri[T τ ] 1
2 and F (ρ,σ ) = supU Tr[ρ 1

2 Uσ
1
2 ] is the Uhlmann fi-

delity. Finally, we can use the Bures–Alberti–Uhlmann bound

Tr[ρ + σ ] − 2F (ρ,σ ) 6 ‖ρ − σ‖1 (49)

to obtain

inf
P

d
(

R̃1, (I ⊗P)(R̃0)
)∣∣

T (50)

6 2sup
T ∈T

′
(

1 − 2
F (ρ(1)

T ,ρ(0)
T )

Tr[ρ(0)
T + ρ(1)

T ]

) 1
2

6 2sup
T ∈T

′ ‖ρ
(1)
T − ρ(0)

T ‖
1
2
1

Tr[ρ(0)
T + ρ(1)

T ]
= 2

√
d(R1, R0)|T. ! (51)
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Fig. 6. Conditioned comb: sequence of quantum operations depending on previously
exchanged classical information. Here i2k−1 is the outcome of the k-th quantum
operation, and sl = i0 i1 . . . il is the history of classical information available at step l.

3.7. Conditioned quantum combs

A general two-party protocol entails the exchange of both quan-
tum systems and of classical information, which is in principle
openly known. Therefore, the strategy of a party will result in
a sequence of quantum operations C

s2k−2
i2k−1

, k = 1,2, . . . , N , as in
Fig. 6. Here the index i2k−1 denotes the outcome of the quantum
operation, and the string sl represents the full history of classi-
cal information exchanged before the occurrence of the operation,
namely sl = i0i1 . . . il , with i2k−2 representing the input classical
information at step k. For example, if the comb in Fig. 6 repre-
sents Alice’s strategy in a two-party protocol with Alice’s and Bob’s
combs interlaced as in Fig. 2, it describes the following situation:
Alice receives from Bob the classical information i0 ≡ s0 along with
a quantum system with the Hilbert space Hs0 . Then she performs
the instrument I s0 = {C s0

j } obtaining the outcome j = i1. Then
she sends to Bob the outcome along with a quantum system with
the Hilbert space Hs1 with s1 = i0i1. The normalization of the in-
strument is

∑

i1

TrHs1

[
C s0

i1
(ρ)

]
= Tr[ρ], ∀s0,∀ρ ∈ Lin(Hs0), (52)

which, in terms of Choi–Jamiołkowski operators reads

∑

i1

TrHs1

[
C s0

i1

]
= Is0 , ∀s0. (53)

At the next step Alice receives from Bob the classical informa-
tion i2 along with a quantum system with the Hilbert space Hs2 ,
which depends on s2 = i0i1i2. Then she performs the instrument
I s2 = {C s2

j } obtaining the outcome j = i3, and so on. By linking
the Choi–Jamiołkowski operators of all quantum operations, one
obtains a family of probabilistic combs {Rs2N−1 } satisfying the nor-
malization conditions

∑

i2k−1

TrHs2k−1

[
R(k)

s2k−2 i2k−1

]
= Is2k−2 ⊗ R(k−1)

s2k−3 , (54)

where R(N)
s2N−1 := Rs2N−1 , R(k)

s2k−1 ∈ Lin(
⊗2k−1

j=0 Hs j ), and R(0) = 1.
Eq. (54) is the mathematical representation of the most general
strategy in a quantum protocol with exchange of classical and
quantum information, generalizing the game-theoretical frame-
work introduced by Gutoski and Watrous [22] for protocols involv-
ing only exchange of quantum systems. We will call the collection
of probabilistic quantum combs satisfying Eq. (54) a conditioned
comb. This nomenclature reflects the fact that the most general
way of conditioning a quantum comb needs to use at each step
the information coming from all previous steps.

On the other hand, also the converse statement is true: a collec-
tion of positive operators satisfying Eq. (54) can always be realized
by a physical scheme as in Fig. 6. This fact is proved in the follow-
ing proposition.

Theorem 2. Any conditioned comb is the collection of Choi–Jamioł-
kowski operators of a network of N conditioned instruments as in Fig. 6.

Proof. Suppose that a collection of operators {Rs2N−1 } labeled by
classical strings s2N−1 = i0i1 . . . i2N−1 satisfies conditions Eq. (54).
Then, we can define the operator

R :=
∑

s2N−1

Rs2N−1 ⊗ |s2N−1〉〈s2N−1|

⊗ |s2N−2〉〈s2N−2| ⊗ · · · ⊗ |s0〉〈s0|. (55)

Here, R acts on the tensor product
⊗2N−1

j=0 H j , where the j-th
space is H j := (

⊕
s j
Hs j ⊗ |s j〉). With this definition, R is a de-

terministic comb, i.e. an operator satisfying Eq. (8). Therefore, by
Proposition 1 R can be realized with a network of N channels
(Ck)

N−1
k=0 as in Fig. 4. Now, if we apply the von Neumann–Lüders

measurements {Is2k ⊗ |s2k〉〈s2k|} on the input space H2k before
channel Ck , followed by {Is2k+1 ⊗ |s2k+1〉〈s2k+1|} on the output
space H2k+1 after channel Ck , we obtain the conditioned quan-
tum operations {C s2k

i2k+1
}. Denoting by C s2k

i2k+1
the Choi–Jamiołkowski

operator of the quantum operation C s2k
i2k+1 we then have Rs2N−1 =

C s2N−2
i2N−1

∗ C s2N−4
i2N−3

∗ · · · ∗ C s0
i1

, i.e. Rs2N−1 is the Choi–Jamiołkowski op-

erator of the sequence of quantum operations (C s2k
i2k+1

)N−1
k=0 , as in

Fig. 6. !

As a consequence of the last theorem single-party strategies
in a protocol are in one-to-one correspondence with conditioned
combs. In the following we will consider dilations of a condi-
tioned comb {Rs2N−1 } defined as the collection {R̃s2N−1 } of dila-
tions R̃s2N−1 ∈ Lin([⊗2N−1

j=0 Hs j ] ⊗HA,s2N−1 ) of each comb Rs2N−1 ∈
Lin(

⊗2N−1
j=0 Hs j ), where HA,s2N−1 is an ancillary space depending

on history. The following theorem guarantees that the dilation of
a conditioned comb is still a conditioned comb.

Theorem 3. For any conditioned comb {Rs2N−1 } the dilation {R̃s2N−1 }
defined by R̃s2N−1 := |R

1
2
s2N−1 〉〉〈〈R

1
2
s2N−1 | is a conditioned comb.

Proof. Define H′
s2N−1

:= Hs2N−1 ⊗HA,s2N−1 and H′
sl

= Hsl for l <

2N − 1. Then, the operators {R̃s2N−1 } form a conditioned comb in
Lin(

⊗2N−1
j=0 H′

s j
). !

The dilation of a conditioned comb describes a sequence of
single-Kraus quantum operations, each of them depending on the
previously exchanged classical information. Loosely speaking, this
theorem means that the “quantum part” of any strategy can be
purified until the end of the protocol, still resulting in a valid strat-
egy.

4. Comb formulation of the quantum bit commitment

A (generally multiparty) protocol establishes which single-party
strategies are honest. A strategy is a choice of processing of clas-
sical/quantum information at each step, and specifies which quan-
tum instrument a party will perform jointly on his ancillae and
on the received quantum systems, conditioned on the available
classical information. The honest strategies of the protocol fix the
communication interface among parties, consisting of the com-
plete specification of which classical and quantum systems are
exchanged at each step. A cheating strategy can be any strategy
that conforms to the communication interface.

A definition of security of a protocol generally depends on the
specific goals of the involved parties. For the quantum bit com-
mitment a protocol is defined as perfectly secure if the following
conditions are satisfied:
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concealingness: for all Alice’s honest strategies Bob cannot read
the committed bit before the opening;
bindingness: for all honest Bob’s strategies Alice cannot change
the value of the committed bit without being detected.

Note the asymmetry between the security condition for the two
parties: on the one hand, security for Alice means that Bob has
no chance at all to read the bit, while, one the other hand, secu-
rity for Bob means that if Alice tries to cheat, she will be surely
detected. Perfect security is relaxed to the case of ε-concealingness
and δ-bindingness, where the probability for Bob to read the com-
mitted bit is bounded by ε, and the probability for Alice to change
the bit value is bounded by δ.

In the following subsections we will formulate strategies in
terms of quantum combs, and evaluate the probabilities of suc-
cessfully cheating for both parties.

4.1. Alice’s and Bob’s strategies

As already noticed, there is no loss of generality in consid-
ering bit commitment protocols started by Bob. With the letter
k = 1, . . . , N we will denote the k-th Bob’s and Alice’s step. Thus
sl = i0i1 . . . il will represent the history of classical information
with i2k−1 denoting the outcome of Bob’s quantum operation at
step k (which is the same as Alice’s classical input at Alice’s step k)
and i2k−2 for k > 1 represents Bob’s input classical information
(which is Alice’s output at step k − 1). At the beginning of the
protocol there is no classical and quantum information, whence
s0 = i0 is the null string and H0 = C. At the end of the commit-
ment stage we can assume without loss of generality that Alice
performs the last move (for a protocol where the last move is
Bob’s, we can always add a null move, in which no classical and
quantum systems are sent).

We will now analyze the case in which the total number of
steps in the protocol is uniformly bounded, and will denote by N
the maximum number of steps. Moreover, since we can always add
null moves, we will consider without loss of generality protocols
where the number of steps N is independent of the history. There-
fore classical history labeling the sequence of quantum operations
will be s2N for Alice, and s2N−1 for Bob.

We denote by A0 and A1 the sets of honest strategies that Al-
ice can use to encode bit values 0 and 1, respectively. According
to Section 3.7, a possible strategy in Ai is a conditioned quan-
tum comb {Ai,s2N }, where the index s2N labels a history of clas-
sical information exchanged between Alice and Bob. For each his-
tory s2N , Ai,s2N is a probabilistic comb on Ks2N ⊗HA,s2N , where
Ks2N = Lin(

⊗2N
j=0Hs j ) is the Hilbert space of all quantum systems

exchanged in the protocol and HA,s2N is the Hilbert space of Alice’s
private ancillae.

In the following we will denote by B the set of strategies (hon-
est or not) that are available to Bob. An element of B is a collection
of probabilistic quantum combs {Bs2N−1 }. For each s2N−1, Bs2N−1 is
a comb on Hs2N−1 ⊗HB,s2N−1 , HB,s2N−1 being the Hilbert space of
Bob’s ancillae. The set B can be the whole set of strategies compat-
ible with the communication interface, or a restricted subset. The
only assumption is that if B contains a strategy, then it contains
also its dilations. The reader should then regard B as a param-
eter of his own choice for the rest of the Letter. Therefore, the
impossibility proof will state that if the protocol is concealing for
a Bob restricted to B, then it is necessarily not binding for the
same Bob.

Since a protocol that is not concealing at step k is also not con-
cealing at any following step, we will now focus on the last step N
before the opening. In the following we will drop the sub-index 2N
(2N − 1) labeling Alice’s (Bob’s) history. For the history s, the over-
all (unnormalized) state resulting from Alice and Bob playing the

strategies {Ai,s′} and {Bs′ }, respectively, is given by the link prod-
uct

σ (i)
s = Bs ∗ Ai,s. (56)

The probability of the history s is then given by the trace

p(i)
s = Tr

[
σ (i)

s
]
. (57)

The local state at Bob before the opening is

ρ(i)
s = TrHA,s

[
σ (i)

s
]
= Bs ∗ Ri,s, (58)

where

Ri,s = TrHA,s [Ai,s] (59)

is the restriction of Alice’s comb to the quantum systems ex-
changed in the protocol.

4.2. Concealing protocols

For any strategy {Bs′ } ∈ B and for any history s we denote by B̃s
the dilation of Bs . Since Bob is free to dilate his quantum opera-
tions using additional ancillae, he can exploit such a dilation to
better discriminate Alice’s strategies.

Definition 1 (Concealing protocols). A quantum bit commitment
protocol is ε-concealing if there is at least a couple of honest
strategies {A0,s′} ∈ A0, {A1,s′} ∈ A1 such that the following condi-
tions hold:

max
s

‖ρ(1)
s − ρ(0)

s ‖1

Tr[ρ(1)
s + ρ(0)

s ]
6 ε, ∀{Bs′} ∈ B, (60)

where ρ(i)
s is the unnormalized state on Bob’s side ρ(i)

s = B̃s ∗ Ri,s ,
with Ri,s = TrHA,s [Ai,s].

As discussed in Section 3.5, the above condition means that, for
any history of classical communication, the probability that Bob
discriminates correctly between R0,s and R1,s is ε-close to 1/2,
the success probability of a random guess.

The concealment condition can be translated in terms of combs
distances as follows:

Lemma 3. A protocol is ε-concealing if and only if there is a couple of
honest strategies {A0,s′ } and {A1,s′ } such that

max
s

d(R1,s, R0,s)|Ts 6 ε, (61)

where Ts = {Ts := TrHB,s [Bs], Bs ∈ {Bs′ } ∈ B}.

Proof. Clearly, condition (60) holds if and only if

max
s

sup
Bs

‖ρ(1)
s − ρ(0)

s ‖1

Tr[ρ(1)
s + ρ(0)

s ]
6 ε, (62)

where Bs = {Bs ∈ {Bs′ } ∈ B}. Moreover, since the set of Bob’s
strategies is closed under dilation, and since dilation improves
the discrimination, the supremum can be taken over the dila-
tions {B̃s′ }. Now, denote by T̃ s the dilation of Ts = TrHB,s [Bs].
Since B̃s and T̃ s are both dilations of Ts , they are connected by
a partial isometry on Bob’s ancillae. The same is true for the states
ρ̃(i)

s := B̃s ∗ Ri,s , and ρ(i)
Ts

:= T̃ s ∗ Ri,s , for each value i = 0,1, whence

‖ρ̃(0)
s − ρ̃(1)

s ‖1 = ‖ρ(0)
Ts

− ρ(1)
Ts

‖1. This implies the identity
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max
s

sup
Bs

‖ρ(1)
s − ρ(0)

s ‖1

Tr[ρ(1)
s + ρ(0)

s ]
= max

s
sup
Bs

‖ρ̃(1)
s − ρ̃(0)

s ‖1

Tr[ρ̃(1)
s + ρ̃(0)

s ]

= max
s

sup
Ts

‖ρ(1)
Ts

− ρ(0)
Ts

‖1

Tr[ρ(1)
Ts

+ ρ(0)
Ts

]
= max

s
d(R1,s, R0,s)|Ts . ! (63)

4.3. Alice’s cheating strategies

Let {As′} and {A$
s′ } be an honest and a dishonest strategy by

Alice, respectively (here we drop the index i = 0,1 of the bit
value, since it is unnecessary for the following discussion). When
Bob chooses the strategy {Bs′ } ∈ B, for history s the unnormalized
quantum states before the opening phase are

σs = Bs ∗ As, σ $
s = Bs ∗ A$

s . (64)

Definition 2. The strategy {A$
s′ } is δ-close to the strategy {As′ } at

the opening if for any strategy {Bs′ } ∈ B one has

max
s

‖σs − σ $
s ‖1

Tr[σs + σ $
s ]

6 δ. (65)

If two strategies are δ-close, even if the history that takes place
is the most favorable to Bob, Bob cannot distinguish between them.

Following the same argument used in the proof of Lemma 3,
the notion of δ-closeness can be expressed in terms of comb dis-
tance as follows:

Proposition 3. The strategy {A$
s′ } is δ-close to the strategy {As′ } at the

opening if and only if

max
s

d
(

As, A$
s
)∣∣

Ts
6 δ, (66)

where Ts = {Ts := TrHB,s [Bs], Bs ∈ {Bs′ } ∈ B}.

Definition 3. Given two honest strategies {A0,s′} ∈ A0, {A1,s′} ∈ A1,
a δ-cheating is a couple of strategies {A$

0,s′} and {A$
1,s′} satisfying

the conditions

1. {A$
i,s′} is δ-close to {Ai,s′} for i = 0,1;

2. for every history s, there exists a quantum channel Cs acting
on Alice’s ancilla space HA,s such that

A$
1,s = (Is ⊗ Cs)

(
A$

0,s

)
, (67)

where Is is the identity channel on the Hilbert space Ks of
all quantum systems exchanged in the commitment phase.

The second condition means that Alice can follow the strategy
{A$

0,s′} until the end of the commitment, and switch to the strat-

egy {A$
1,s} with a local operation on her ancillae just before the

opening.

5. The impossibility proof

5.1. Protocols with bounded number of rounds

Theorem 4. If an N-round protocol is ε-concealing with honest strate-
gies {A0,s} ∈ A0 and {A1,s} ∈ A1 , then there is a 2

√
ε-cheating with

cheating strategies {A$
0,s} and {A$

1,s}. In particular, the cheating strat-

egy {A$
0,s} coincides with the honest strategy {A0,s}.

Proof. According to Eq. (61), the concealing condition is for any
history s

d(R1,s, R0,s)|Ts < ε, (68)

where Ri,s = TrHA,s [Ai,s] and Ts = {Ts = TrHB,s [Bs] | Bs ∈ {Bs′ } ∈ B}.
We now focus on a fixed history s, and show the existence of two
2
√

ε-cheating strategies {A$
0,s′ } and {A$

1,s′ }. Since we are fixing s,
we drop the index s everywhere.

Since the reduced combs Ri = TrHA [Ai] ∈ Lin(K) satisfy the
condition d(R1, R0)|T < ε, we can use the continuity of dilation
stated by Lemma 2, thus finding a random unitary channel P =∑

k pkUk acting on HA such that

d
(

R̃1, (I ⊗P)R̃0
)∣∣

T 6 2
√

d(R1, R0)|T, (69)

where R̃ i is the dilation R̃ i = |R
1
2
i 〉〉〈〈R

1
2
i | ∈ Lin(K ⊗ KA), with

KA *K. Now consider the dilations of the honest strategies

Ãi :=
∣∣A

1
2
i

〉〉〈〈
A

1
2
i

∣∣. (70)

Here Ãi is an operator in Lin(K⊗HA ⊗LA) where LA *K⊗HA
is an additional ancilla space on Alice’s side. By definition, Ri =
TrHA ,LA [ Ãi]. Since Ãi and R̃ i are both dilations of Ri , there exist
a channel Ei sending states on (HA ⊗ LA) to states on KA such
that

R̃ i = (IK ⊗ Ei)( Ãi), (71)

and a channel Fi sending states on KA to states on (HA ⊗ LA)
such that

Ãi = (IK ⊗Fi)(R̃ i). (72)

Alice’s cheating procedure is then the following:

• Use the dilated strategy Ã0.
• After the commitment decide the bit value. To commit 0, do

nothing. To commit 1, apply the channel C = F1PE0 on the
ancillae, where P(ρ) = ∑

i pi UiρU †
i .

• Discard the additional ancilla LA .

This procedure defines for every history s the two cheating strate-
gies {A$

0,s′ } := {A0,s′} and {A1,s′} := {(Is′ ⊗ Cs′ )(A$
0,s)}. Clearly,

{A$
0,s′} is 2

√
ε-close to {A0,s′ } (in fact, they coincide). Regarding

{A$
1,s′}, for any history s (and hence dropping the index) we have

d
(

A1, A$
1

)∣∣
T = d

(
A1,TrLA

[
(I ⊗F1PE0)( Ã0)

])∣∣
T

6 d
(

Ã1, (I ⊗F1PE0)( Ã0)
)∣∣

T

= d
(
(I ⊗F1)(R̃1), (I ⊗F1P)(R̃0)

)∣∣
T

6 d
(

R̃1, (I ⊗P)(R̃0)
)∣∣

T

6 2
√

d(R1, R0)|T 6 2
√

ε. (73)

Here, the first and the second inequalities derive from Lemma 1,
the third one is Eq. (69), and the last is the concealing condi-
tion. !

5.2. Protocols with unbounded number or rounds

Here we show how the impossibility result of the previous sub-
section can be easily extended to the case of protocols where the
number of rounds is unbounded. In this case Alice’s (Bob’s) strate-
gies are still described by collections of probabilistic combs {As}
and ({Bs}), where each probabilistic comb represents the sequence
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of quantum operations performed by Alice (Bob) for a given his-
tory s of classical communication. Note that, although the length
of the strings is no longer bounded by a fixed number N < ∞,
any given string s must have finite length. Indeed, a protocol al-
lowing an infinitely long history s would be a protocol in which
sometimes Alice and Bob have to continue their communication
forever, without reaching neither a successful commitment, nor
an abort.

For a protocol with unbounded number of rounds, the condi-
tions of ε-concealment and δ-closeness are still given by Eqs. (60)
and (65), respectively. Now, it is immediate to see that, given
an ε-concealing protocol with unbounded number of rounds, one
can always construct a new ε-concealing protocol with bounded
number. Indeed, Alice can follow the original unbounded proto-
col, and decide to abort whenever the number of rounds exceeds
a fixed number N . This change does not change the security of
the protocol: it just reduces the probability of successful commit-
ment by turning some histories that in the original protocol ended
in a successful commitment into histories that end in an abort.
For the new protocol with finite rounds, however, one apply Theo-
rem 4, thus finding a 2

√
ε-cheating for Alice. Since N is arbitrary

and since for any N the cheating strategy coincides with the hon-
est one up to the opening, Alice can take the number N to be
sufficiently large to make the probability of successful commitment
close to the one of the original protocol.

6. Summary

In this Letter we have provided a new short impossibility proof
of quantum bit commitment. The present proof differs from the
previous ones in the following main aspects: (a) The strategies, in-
cluding all their “purifications”, have a simple and univocal math-
ematical representation in terms of conditioned quantum combs
in Eq. (54); (b) The definition of concealment and bindingness
are worst-case over histories namely the conditions on cheating
probabilities are defined uniformly over histories of classical com-
munication rather than on average; (c) We consider the possibility
of restricting the strategies of Bob to a set which however con-
tains all their dilations, and show that if the protocol is concealing
for Bob restricted in this way, then it is not binding. It is pos-
sible to prove along similar lines the impossibility theorem also
with cheating probabilities averaged over histories, however the
two impossibility theorems are not comparable, since worst-case
concealment implies concealment in average, while bindingness in
average implies worst-case bindingness, but not vice versa.

At the end of the Letter, we want to stress two points regard-
ing abortion probabilities. First, concealment is defined regardless
abortion, namely Bob cannot detect the bit value anyway, whether
Alice catches him or not. Second, in order to cheat Alice plays
an honest strategy {A0,s′} up to the very last moment of the open-
ing, at which point her cheating is undetectable by Bob (by the
impossibility theorem). Therefore, Alice always plays zero up to the
abortion (if any), and takes her decision only when the opening is
reached. Whence she successfully cheats also for protocols with
abortions, and the impossibility theorem still holds. On the other
hand, if we don’t allow to repeat the protocol, then the only possi-
bility is that the protocol aborts for honest Alice, whence there is
no bit commitment at all, and the theorem applies trivially.
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Appendix A. Proof of minimax equality in Eq. (45)

Lemma 4. Let f be the function from C × T to R:

f (C, T ) = Re
〈〈
Ψ

(1)
T ,I

∣∣Ψ (0)
T ,C

〉〉
, (A.1)

〈〈
Ψ

(1)
T ,I

∣∣Ψ (0)
T ,C

〉〉
= 〈〈R

1
2
1 |T τ ⊗ C |R

1
2
0 〉〉

Tr[T τ (R0 + R1)]
(A.2)

where Ri > 0. Then one has the identity

inf
T

′ sup
C

f (C, T ) = sup
C

inf
T

′ f (C, T ), (A.3)

where the infimum over T is taken over the set of testers T ∈ T such that
Tr[T τ (R0 + R1)] 1= 0.

Proof. Define the compact convex set Tn as

Tn :=
{

T ∈ T
∣∣∣ Tr

[
T τ (R0 + R1)

]
> 1

n

}
. (A.4)

We now restrict f to the set Tn and apply Sion’s minimax the-
orem [29]. The hypotheses of the theorem are satisfied: First the
function is continuous versus C and T and both sets C and Tn are
compact and convex. Finally, the function f , being linear-fractional,
is quasi-linear in T for every C , and it is linear in C for every
T ∈ T [30].

Now, using the fact that Tn is included in T and applying Sion’s
theorem [29] we obtain for any n

inf
T ∈Tn

sup
C

f (C, T ) = sup
C

inf
T ∈Tn

f (C, T ). (A.5)

Since the equality holds for any n, we also have

inf
T ∈T

sup
C

f (C, T ) = inf
n

inf
T ∈Tn

sup
C

f (C, T )

= inf
n

sup
C

inf
T ∈Tn

f (C, T ) = lim
n→∞ sup

C
inf

T ∈Tn
f (C, T )

= sup
C

inf
T ∈T

f (C, T ). ! (A.6)
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