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Summary. — We perform the exact numerical diagonalization of the Hamiltonians
that describe both degenerate and nondegenerate parametric amplifiers, by exploit-
ing the conservation laws pertaining each device. We clarify the conditions under
which the parametric approximation holds, showing that the most relevant require-
ment is the coherence of the pump after the interaction, rather than its undepletion.

PACS 03.65 – Quantum mechanics.
PACS 42.50 – Quantum optics.
PACS 42.65.Yj – Optical parametric oscillators and amplifiers.
PACS 42.50.Ar – Photon statistics and coherence theory.

1. – Introduction

The interactions of different radiation modes through nonlinear crystals allow the
generation of interesting states of light, which exhibit a rich variety of phenomena [1-15].
Most of the theoretical analysis usually refers to situations where one mode—the so-
called “pump” mode—is placed in a high-amplitude coherent state. In such cases the
parametric approximation is widely used to compute the dynamical evolution [16]. In
the parametric approximation the pump mode is classically treated as a c-number, thus
neglecting both the depletion mechanism and quantum fluctuations. As a result, bilinear
and trilinear Hamiltonians are reduced to linear and quadratic forms in the field oper-
ators, respectively, and hence some useful mathematical tools—typically decomposition
formulas for Lie algebras—can be exploited for calculations [3, 17,18].
In the validity regime of the parametric approximation different optical devices experi-

mentally realize different fundamental unitary operators in quantum optics. For example,
a beam splitter, by suitably mixing the signal state with a strong local oscillator at the
same frequency, realizes the displacement operator, which generates coherent states from
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the vacuum. Similarly, a degenerate parametric amplifier realizes the squeezing opera-
tor, which is the generator of the squeezed vacuum. Finally, a nondegenerate parametric
amplifier realizes the two-mode squeezing operator, i.e. the generator of twin-beam. In
the above scenario, it is matter of great interest to study the conditions under which
the parametric approximation holds. This issue has been considered by a number of
authors [19-22], however without giving a general validity criterion, which is the main
concern of this paper. Quantum effects in two-mode optical amplifiers have been exten-
sively analyzed [20,21,23-30]. Frequency couplers with intensity-dependent coupling have
been studied [25, 26, 31], whereas the case of degenerate parametric amplifier has been
considered by many authors [20, 21, 24, 27-30]. Phase correlations [28] and the signal-
pump degree of entanglement [29] have been examined. The effect of pump squeezing
has been also considered [30]. On the other hand, though trilinear processes have been
thoroughly analyzed in refs. [15, 24, 32], only little attention has been devoted to the
parametric approximation in nondegenerate amplifiers [22].
The most explicit conditions for the validity of the parametric approximation have

been derived in refs. [19] and [20], for the beam splitter and the degenerate parametric
amplifier, respectively. In both references sufficient conditions have been derived, which
however can be widely breached in relevant cases of interest, as we will show in the
following.
In this paper we perform the exact numerical diagonalization of the full Hamilto-

nians pertaining the three above-mentioned devices. As was already noted by other
authors [23, 24, 32], such a numerical treatment is made amenable by the presence of
constants of motion that characterizes each Hamiltonian. In fact, the Hilbert space can
be decomposed into the direct sum of subspaces that are invariant under the action of
the unitary evolution. Therefore, one needs to diagonalize the Hamiltonian just inside
each invariant subspace, thus considerably reducing the dimension of the diagonalization
space [23,24,32].
We analyze in different sections the cases of the beam splitter, the degenerate para-

metric amplifier and the nondegenerate parametric amplifier. The case of the beam
splitter can be treated analytically, but we also present some numerical results in order
to introduce the general approach that will be used for the parametric amplifiers. For
each device, we look for the conditions under which the parametric approximation holds,
for both vacuum and non-vacuum input signal states. The comparison between the exact
evolution and the theoretical predictions from the parametric approximation is made in
terms of the overlap O = √

Tr(�̂out �̂th) between the state �̂out that exits the device
and the theoretical state �̂th obtained within the approximation. An explicit comparison
in terms of photon number distributions and Wigner functions is also given for some
interesting and representative cases.
The main result of the paper is to show that the usual requirements for the validity

of the parametric approximation, namely short interaction time and strong classical
undepleted pump, are too strict. Indeed, we show that the only relevant requirement
is the coherence of the pump after the interaction, rather than its undepletion. In fact,
we will show typical examples in which the pump at the input is weak (one photon in
average), after the interaction it is highly depleted, and notwithstanding the parametric
approximation still holds. On the other hand, there are cases in which the pump after the
interaction is only slightly depleted, however is no longer coherent, and the approximation
fails. Finally, we show some interesting features such as pump squeezing and Schrödinger-
cat-like state generation that arise when the parametric approximation breaks down.



ON THE PARAMETRIC APPROXIMATION IN QUANTUM OPTICS 341

2. – Displacer

The beam splitter is a passive device that couples two different modes of radiation at
the same frequency through a first-order susceptibility-tensor χ(1) medium. Such device
is widely used in quantum optics [1, 33], from homodyne/heterodyne detection [34], to
directional couplers [35] and cavity QED [36]. In the rotating wave approximation and
under phase-matching conditions, the beam splitter Hamiltonian writes in terms of the
two mode operators a and b as follows:

ĤBS = κ
(
ab† + a†b

)
,(1)

where κ is the coupling constant proportional to the χ(1) of the medium. The unitary
evolution operator of the device in the interaction picture writes

ÛBS = exp
[−iτ (

ab† + a†b
)]
= e−i tan τab† | cos τ |a†a−b†b e−i tan τa†b ,(2)

where τ is the interaction time rescaled by the coupling κ. The factorization of the
operator ÛBS in eq. (2) has been derived by applying the Baker-Campbell-Hausdorff
formula for the SU(2) algebra [3, 17, 18]. The Heisenberg evolution of the field modes
reads

Û†
BS

(
a
b

)
ÛBS =

(
a cos τ − ib sin τ
−ia sin τ + b cos τ

)
.(3)

From eq. (3) it turns out that the transmissivity θ at the beam splitter is given by the
relation θ = cos2 τ .
The parametric approximation refers to situations in which one mode—say mode b—

is excited in a strong coherent state. In this case in the first line of eq. (2) the operator
b might be replaced by a c-number, namely the complex amplitude β of the coherent
state. Under this assumption, the evolution operator (2) would rewrite as the following
displacement operator:

D̂(−iβτ) ≡ exp [−iτ (
βa† + β̄a

)]
.(4)

A more refined approximation that takes into account the 2π-periodicity in the exact
Heisenberg equations (3) is

D̂(−iβ sin τ) ≡ exp [−i sin τ (
βa† + β̄a

)]
.(5)

Indeed, the more precise result in eq. (5) can be obtained by recasting the factorized
expression in eq. (2) in normal order with respect to mode a, after taking the expectation
over mode b [37, 38]. The simple form of the bilinear Hamiltonian in eq. (1) allows to
clarify the conditions under which the parametric approximation (5) holds [19]. A set of
sufficient requirements are given by

|β| → ∞ , sin τ → 0(6)
|β| sin τ = const ,
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Fig. 1. – Performances of a beam splitter in achieving the displacement operator. We report the
maximum displacing amplitude |zM| achievable by a beam splitter as a function of the pump
amplitude |β|. In the picture triangles refer to vacuum input, squares to coherent state input
|α ≡ 1〉, and circles to number state input |n ≡ 1〉.

without any assumption on the “signal” state for mode a. Hence, by combining a signal
input state �̂in with a strong coherent local oscillator |β〉 in a beam splitter with very high
transmissivity, one can achieve the displacement operator in eq. (5). The theoretically
expected state �̂th then writes

�̂th = D̂(−iβ sin τ) �̂in D̂†(−iβ sin τ) .(7)

Here we present some numerical results concerning the exact unitary evolution of
eq. (2). The dynamics generated by the Hamiltonian (1) preserves the total number of
photons involved in the process, in agreement with the following commutation relation:[

ĤBS, a
†a+ b†b

]
= 0 .(8)

Therefore, it is convenient to decompose the Hilbert space Ha ⊗ Hb as a direct sum of
subspaces with a fixed number N of photons, since these are invariant under the action
of the unitary evolution operator (2). Such a decomposition can be written as follows:

Ha ⊗Hb = ⊕+∞
N=0HN ,(9)

where

HN = Span {|m〉 ⊗ |N −m〉 ,m ∈ [0, N ]} ,(10)

Span{·} denoting the Hilbert subspace linearly spanned by the orthogonal vectors within
the brackets, and |n〉⊗ |m〉 ≡ |n,m〉 representing the common eigenvector of the number
operator of the two modes. The decomposition in eq. (9) makes the Hamiltonian (1)
block-diagonal, namely

ĤBS =
+∞∑
N=0

ĥN ,(11)
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Fig. 2. – Performances of a degenerate parametric amplifier in providing the squeezing operator
Ŝ(ζ). In both pictures triangles refer to vacuum input, squares to coherent state input |α ≡ 1〉,
circles to number state input |n ≡ 1〉, and stars to number state input |n ≡ 2〉. In (a) we
report the quantity τ�, namely the maximum interaction time that leads to an output signal
whose overlap with the theoretical squeezed state is larger than 99%, as a function of the
pump intensity |β|2. In (b) we show the maximum squeezing parameter |ζM| achievable by the
degenerate parametric amplifier, as a function of the pump amplitude |β|.

where ĥN acts just inside the subspace HN . Correspondingly, a generic two-mode state
|ψ0〉 can be written in the orthogonal basis (10) as follows:

|ψ0〉 =
+∞∑
N=0

N∑
m=0

cm,N−m |m,N −m〉 .(12)

The diagonalization is performed inside each invariant subspace, and the truncation of
the series in eqs. (11) and (12) corresponds to fix the maximum eigenvalue of the constant
of motion a†a+ b†b.
The state �̂out evaluated by the exact evolution operator (2) is given by

�̂out = Trb[ÛBS(�̂in ⊗ |β〉〈β|)Û†
BS] ,(13)

where Trb denotes the partial trace on Hb. The comparison between the theoretical state
�̂th of eq. (7) within the parametric approximation and the actual state �̂out is made in
terms of the relative overlap

O ≡
√
Tr[�̂th�̂out] .(14)

In the case of coherent input signal the overlap is evaluated analytically. One has

ÛBS |α〉 ⊗ |β〉 = |α cos τ − iβ sin τ〉 ⊗ |β cos τ − iα sin τ〉 ,(15)

and thus

O = |〈α− iβ sin τ |α cos τ − iβ sin τ〉| = exp
[
−4|α|2 sin4 τ

2

]
.(16)



344 G. M. D’ARIANO, M. G. A. PARIS and M. F. SACCHI

From eq. (16) it is apparent that the parametric approximation gives always exact results
for vacuum input state (α ≡ 0), whereas it is justified for coherent state as long as
4|α|2 sin4(τ/2)� 1, independently of the pump intensity.
We introduce the quantity τ� which represents, for a fixed value of the pump amplitude

|β|, the maximum interaction time leading to an overlap larger than 99%. The value of
τ� clearly depends on the input signal: in agreement with eq. (16) it is not defined for
the vacuum (parametric approximation is exact), whereas for a coherent input signal |α〉
it is given by

τ� = 2arcsin

√
C

|α| C =
1
2
(− ln 0.99)1/2 � 0.05 .

The quantity τ� also determines the maximum displacing amplitude |zM| ≡ |β| sin τ�

that can be achieved by a beam splitter with a coherent pump |β〉. In fig. 1 we have
reported |zM| for the vacuum, a coherent state and a number state as a function of the
pump amplitude |β|. The linear behavior of the plots indicates that τ� is independent
of the pump intensity. In the case of vacuum input we have complete energy transfer
from the pump to the signal (slope of |zM| vs. |β| equal to unit). Although they have the
same energy, the coherent and number input states show different slopes, the coherent
being more similar to the vacuum. Actually the set of coherent states is closed under the
action of the displacement operator, so that the parametric approximation can fail only
in predicting the exact amplitude of the output coherent state.
We conclude that the first of requirements (7) is too tight. At least for coherent and

number states, as long as the signal average photon number is less than the pump one,
the beam splitter can “displace” the signal also for very weak pump.
In the next sections we will deal with the problem of parametric approximation in

nonlinear amplifiers.

3. – Squeezer

The degenerate parametric amplifier couples a signal mode a at frequency ωa with
a pump mode c at double frequency ωc = 2ωa. The interaction is mediated by the
second-order susceptibility tensor χ(2) of the medium. Each photon in the pump mode
produces a photon pair in the signal mode, giving rise to light with a number of interesting
properties, such as phase-sensitive amplification, squeezing and antibunching [4-7,15]. In
the rotating wave approximation and under phase-matching conditions the Hamiltonian
writes

ĤDP = κ
(
a2c† + a†2c

)
,(17)

with κ ∝ χ(2). The corresponding unitary evolution operator in the interaction picture
reads

ÛDP = exp
[−iτ (

a2c† + a†2c
)]
,(18)

where τ represents a rescaled interaction time. The parametric approximation replaces
the pump mode c by the complex amplitude β of the corresponding coherent state, such
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Fig. 3. – Average photon number 〈n̂〉out of the signal at the output of a degenerate parametric
amplifier, as a function of the interaction time τ . In (a) the case of vacuum input, in (b)
coherent input |α ≡ 1〉, in (c) number input |n ≡ 1〉, and in (d) number input |n ≡ 2〉. Different
line-styles refer to different pump amplitudes: β = 9 (dot-dot-dashed), β = 7 (dotted), β = 5
(dot-dashed), β = 3 (dashed), β = 1 (solid).

that the operator (18) rewrites as

Ŝ(−2iτβ) ≡ exp [−iτ (
βa†2 + β̄a2

)]
,(19)

Ŝ(ζ) being the squeezing operator [4]. In the case of coherent input signal |α〉, the
predicted state at the output is the squeezed state

Ŝ(−2iτβ)|α〉 = Ŝ(−2iτβ)D̂(α)|0〉 = D̂(α̃)Ŝ(−2iτβ)|0〉 ≡ |α̃ ,−2iτβ〉 ,(20)

with α̃ = α cosh(−2iτβ)+ ᾱ sinh(−2iτβ). Notice that, differently from the beam splitter
operator of eq. (2), we have no method available to order eq. (18) normally with respect
to mode c (as in eq. (2) for b) and then replace such mode by the c-number |β|. Hence,
we have no analogous nonperturbative method to estimate the validity of the parametric
approximation. Hillery and Zubairy have been approached the question [20] in terms
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Fig. 4. – Fano factor F of the pump at the output of a degenerate parametric amplifier, as a
function of the interaction time τ . In (a) the case of vacuum input; in (b) of coherent input
|α ≡ 1〉. Different line-styles refer to different pump amplitude: β = 9 (dot-dot-dashed), β = 7
(dotted), β = 5 (dot-dashed), β = 3 (dashed), β = 1 (solid).

of a perturbation series for the propagator of the Hamiltonian (17). For initial vacuum
state at mode a, they write the following conditions:

1/|β| � 1 , τ � 1 ,(21)

τe4|β|τ � 1 , e4|β|τ � |β| .

Here we evaluate the exact evolution generated by the operator (18) through numerical
diagonalization of the Hamiltonian (17), using the method based on the constant of
motion. In this case one has [

ĤDP, a
†a+ 2c†c

]
= 0 ,(22)

and the Hilbert space Ha⊗Hc is decomposed in terms of invariant subspaces correspond-
ing to the eigenvalues of the constant of motion a†a+ 2c†c, namely

Ha ⊗Hc = ⊕+∞
N=0HN ,(23)

with

HN = Span {|N − 2m〉 ⊗ |m〉 ,m ∈ [0, �N/2� ]} ,(24)

� � denoting the integer part of x. Hence the Hamiltonian in eq. (17) rewrites in the
same fashion as in eq. (11) and the block-diagonalization is performed for each ĥN , with
N from 0 to the maximum allowed value of the constant of motion. Similarly to eq. (12),
a generic two-mode state |ψ0〉 is written as follows:

|ψ0〉 =
+∞∑
N=0

�N/2�∑
m=0

cN−2m,m |N − 2m,m〉 .(25)
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Fig. 5. – Contour plot Wigner functions of both the signal and the pump modes at the output
of a degenerate parametric amplifier. The input signal is the vacuum, whereas the pump is
initially in a coherent state β = −i. The time interaction is equal to τ = τ� = 0.42 in (a) and
to τ = 2τ� = 0.84 in (b).

The performances of a degenerate parametric amplifier in realizing the squeezing operator
Ŝ(ζ) = exp[1/2(ζa†2− ζ̄a2)] of eq. (19) are depicted in fig. 2. In fig. 2a) we have reported
the maximum interaction time τ� that leads to an output signal whose overlap with the
theoretical squeezed state is larger than 99%, as a function of the pump intensity |β|2. In
2b) we have shown the maximum squeezing parameter |ζM| achievable by the amplifier,
as a function of the pump amplitude |β|. According to eq. (19) one has |ζM| = 2|β|τ�. In
both pictures we have considered the vacuum, a coherent state and two different number
states at the input of the amplifier. For the same set of input states, we have also shown
in fig. 3 the average signal photon number as a function of the interaction time τ , for
five different values of the pump amplitude.
From fig. 2 it turns out that the requirements for vacuum input signal in eq. (22)

are too strict. In particular, the two conditions in the second line are not satisfied for
1 < |β| < 9 (see the line with triangles in fig. 2a)). Moreover, fig. 2 shows that one can
realize a squeezing operator even through a weak pump with just one photon.
By definition the validity of the parametric approximation is guaranteed for τ < τ�,

τ� depending on |β| and on the input state. However, we want to provide a general
criterion that can be easily checked experimentally. As we will show in the following, the
undepletion of the pump is not a valid criterion. We argue that the relevant parameter,
in order to confirm whether the parametric approximation is justified or not, is the degree
of coherence of the pump after the nonlinear interaction. These statements are supported
by the following numerical results.
Let us consider the case of a number input state |n = 1〉 with pump amplitude |β| = 9.

From fig. 2 one can extract the maximum interaction time τ� � 0.073 for the validity
of the parametric approximation, and the corresponding maximum squeezing parameter
|ζM| � 1.314. The average photon number of the output state can be drawn from fig. 3c)
as 〈n〉out � 9.68, corresponding to a pump depletion of about 5.4%. One might consider
such a small depletion as the sign of the goodness of the parametric approximation. On
the other hand, from fig. 3c) one recognizes the region 0.33 � τ � 0.44, in which the
output signal is even less excited than that in the above example, and consequently the
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Fig. 6. – Photon number probability and contour plot Wigner function for both the signal and
the pump mode at the output of a degenerate parametric amplifier. The plots refer to a situation
in which the signal mode is initially in the vacuum and the pump mode is excited to a coherent
state with amplitude β = −3i. In (a) and (b) the interaction time is equal to τ ≡ τ� = 0.19,
whereas (c) and (d) refer to an interaction time τ = 0.43 > 2τ�. In the first case the parametric
approximation well describes the real interaction, which produces a squeezed vacuum state with
squeezing parameter r = 1.146 corresponding to about 2 squeezing photons. On the other hand,
parametric approximation does not hold in the second case. Notice that the break-down of
parametric approximation is connected with the appearance of negative values in the Wigner
function, which is a signature of quantum interference in the phase space.

pump is less depleted. Nevertheless the parametric approximation does not hold in such
range of interaction time, since τ is larger than τ�. Let us now consider the Fano factor
F = 〈∆n̂2〉/〈n̂〉 of the pump at the output. One finds that in the region 0.33 � τ � 0.44
the Fano factor is always larger than F = 1.13, whereas for τ < τ� it never exceeds
F = 1.10.
More generally, in all situations in which the parametric approximation is satisfied

we found that the Fano factor of the pump at the output never exceeds F = 1.10. This
holds also when the pump is weak (|β|2 = 1–10). Indeed, in this case the depletion of the
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pump can be strong, nevertheless the parametric approximation does not break down.
In fig. 4 we show the Fano factor of the output pump as a function of the interaction
time τ , for different values of the pump amplitude. Plots refer to vacuum input and to
coherent state input |α ≡ 1〉: similar plots can be obtained for other input states.
As the condition of pump undepletion does not guarantee the validity of the paramet-

ric approximation, so pump depletion by itself does not sign its failure: rather we have
to consider the Fano factor of the pump. In order to stress this point, let us consider
the extreme case of a pump with only one photon, and the input signal in the vacuum.
The exact numerical solution indicates that the parametric approximation holds for in-
teraction time up to τ� � 0.42, the squeezing parameter and the output signal photon
number increasing up to |ζM| � 0.84 and 〈n〉out � 0.74, respectively (see figs. 2 and 3a)).
Correspondingly, the pump depletion grows up to 37% at τ = τ�. In spite of the strong
depletion, the pump preserves a good degree of coherence: the Fano factor achieves at
most the value F = 1.10 at τ = τ�.
In summary, the validity regime τ < τ� for the parametric approximation does not

identify with the condition of pump undepletion, rather it corresponds to a Fano factor
not exceeding the initial coherent level more than 10%.
What happens beyond the parametric regime? For interaction time larger than τ�

new quantum effects arise at the output. In fig. 5 we show the Wigner functions of both
the signal and the pump modes at the output of the amplifier for τ = τ� and τ = 2τ�,
with vacuum input and weak pump |β| = 1. In fig. 6 the case of a stronger pump is
given. As τ increases, the pump first empties, then it starts refilling, preferably for even
photon numbers, leading to oscillations in the photon number distribution. Remarkably,
the corresponding Wigner functions of the pump and the signal exhibit interference in
the phase space [39], the signal resembling a Schrödinger-cat.

4. – Two-mode squeezer

The nondegenerate parametric amplifier involves three different modes of the radiation
field—say the signal a, the idler b and the pump c—which are coupled by a χ(2) nonlinear
medium. The relation between the frequencies of the field modes is given by ωc = ωa+ωb.
The Hamiltonian of the amplifier under phase-matched conditions can be written in the
rotating wave approximation as follows:

ĤNP = κ
(
abc† + a†b†c

)
,(26)

with κ ∝ χ(2). The Hamiltonian in eq. (26) describes also the case in which the frequen-
cies pertaining modes a and b are the same, provided that the respective wave vectors
and/or polarizations are different. The dynamics induced by the Hamiltonian (26) leads
to a considerably rich variety of phenomena, such as generation of strongly correlated
photon pairs by parametric downconversion [8-10], phase insensitive amplification [3,16],
generation of heterodyne eigenstates that are suitable for optimal phase detection [11],
polarization entanglement [12] and realization of Bell states [10, 12-14]. The unitary
evolution operator in the interaction picture reads

ÛNP = exp
[−iτ (

abc† + a†b†c
)]
,(27)

where τ represents a rescaled interaction time. The parametric approximation replaces
in eq. (27) the pump mode c with the complex amplitude β of the corresponding coherent
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Fig. 7. – Performances of a nondegenerate parametric amplifier in achieving the two-mode
squeezing operator. In both pictures triangles refer to vacuum input and circles to photon
number state |1, 1〉 input. In (a) we report the quantity τ�, namely the maximum interaction
time that leads to an output signal whose overlap with the theoretical state is larger than 99%,
as a function of the pump intensity |β|2. In (b) we show the corresponding maximum two-mode
squeezing parameter |χM| achievable by the nondegenerate parametric amplifier, as a function
of the pump amplitude |β|.

state, thus achieving the two-mode squeezing operator

Ŝ2(−iτβ) ≡ exp
[−iτ (

βa†b† + β̄ab
)]
.(28)

Fig. 8. – Average photon number 〈n̂〉out of the signal at the output of a nondegenerate parametric
amplifier, as a function of the interaction time τ . In (a) the case of vacuum input, and in (b)
the case of photon number input |1, 1〉. Different line-styles refer to different pump amplitudes:
β = 9 (dot-dot-dashed), β = 7 (dotted), β = 5 (dot-dashed), β = 3 (dashed), β = 1 (solid).
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Fig. 9. – Photon number probabilities for both the signal and the pump modes at the output of
a nondegenerate parametric amplifier. The plots refer to a situation in which the signal mode
is initially in the (two-mode) vacuum and the pump mode is excited to a coherent state with
amplitude β = −5i. The interaction time is equal to τ ≡ τ� = 0.214 in (a), and to τ = 3τ�

in (b). In the first case the parametric approximation well describes the real interaction, which
produces a twin-beam state with two-mode squeezing parameter χ = 0.789 corresponding to
about 3.3 output photons. On the other hand, parametric approximation does not hold in the
second case, as can be easily recognized from the pump squeezing. The pump Fano factor in
(b) is about F = 7.4.

The two-mode squeezing operator yields a suppression of the quantum fluctuations in
one quadrature of the sum and difference of modes a± b [40]. When applied to vacuum
input, the unitary operator in eq. (28) generates the so-called twin-beam

Ŝ2(χ)|0, 0〉 = (1− |λ|2)1/2
∞∑

n=0

λn|n, n〉 ,(29)

where λ = arg(χ) tanh |χ|. The expression in eq. (29) can be easily derived by factorizing
the Ŝ2 operator through the decomposition formulas for the SU(1, 1) Lie algebra [3,17,18].
The dynamics of the nondegenerate parametric amplifier admits two independent

constants of motion. We choose them as follows:

N̂ =
1
2

[
a†a+ b†b+ 2c†c

]
, K̂ = a†a+ c†c .(30)

Correspondingly, we decompose the Hilbert space Ha ⊗Hb ⊗Hc in the direct sum

Ha ⊗Hb ⊗Hc = ⊕∞
N=0 ⊕N

K=0 HNK ,(31)

where the invariant subspaces HNK are given by

HNK = Span {|K −m〉 ⊗ |N −K −m〉 ⊗ |m〉 ,(32)
m ∈ [0,min(K,N −K)]} .
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The Hamiltonian ĤNP and a generic three-mode state |ψ0〉 will be consistently written
as follows:

ĤNP =
+∞∑
N=0

N∑
K=0

ĥNK ,(33)

|ψ0〉 =
+∞∑
N=0

N∑
K=0

min(K,N−K)∑
m=0

cK−m,N−K−m,m |K −m,N −K −m,m〉 .(34)

To compute the exact dynamical evolution, one then diagonalizes each block ĥNK in
eq. (33) up to a fixed maximum value of N and makes the input state evolve in the
representation of eq. (34).
As in the previous section, we have evaluated the maximum interaction time τ� that

provides an output state—in the signal and idler modes—whose overlap with the state
predicted by the parametric approximation is larger than 99%. The time τ� for vacuum
input and number input |n ≡ 1, n ≡ 1〉 is plotted as a function of the pump intensity
in fig. 7a). The corresponding achievable two-mode squeezing parameter—the maximum
argument |χM| in the operator (29)—is represented in fig. 7b). In fig. 8 we show the
average photon number 〈n〉out of the output signal mode as a function of the interaction
time, and for different values of the pump amplitude. Notice that the quantity a†a− b†b
is conserved, so that, for the considered input states, the idler mode has the same average
photon number as the signal one.
As shown for the degenerate case, here also the requirement of a strong pump is not

peremptory, whereas the undepletion of the pump does not guarantee the validity of
the parametric approximation. Again, it is the Fano factor F of the pump after the
interaction that well discriminates the working regimes of the amplifier. As long as F ≤
1.10, the overlap between the states at the output and those predicted by the parametric
approximation is larger than 99%. For interaction time longer than τ�, the pump mode
reveals its quantum character, by showing oscillations in the number probability. This is
illustrated in fig. 9, where we report the photon number probabilities for both the signal
and the pump modes in the case of vacuum input and pump amplitude equal to |β| = 5,
for different values of the interaction time.

5. – Conclusions

The quantum description of many optical devices is based on interaction Hamiltonians
that couple different modes of radiation through the susceptibility tensor of the medium
that supports the interaction. The theoretical predictions about such interactions are
usually drawn in the so-called parametric approximation, i.e. by treating the pump mode
classically as a fixed c-number. Owing to such approximation, an analytical treatment
is possible with the help of the factorization formulas for Lie algebras.
In this paper we have investigated the conditions under which the parametric approx-

imation holds in the treatment of χ(2) nonlinear amplifiers, by resorting to the exact
diagonalization of the their full Hamiltonians. We have explicitly compared the states
evaluated by the exact evolution with those predicted by the parametric approximation,
in terms of the overlap between such states. On the one hand, we have shown that the



ON THE PARAMETRIC APPROXIMATION IN QUANTUM OPTICS 353

regime of validity of the parametric approximation is very large, including also the case
of weak pump with 1–10 mean photon number. On the other hand, we have found that
neither the condition of pump undepletion guarantees the goodness of the approxima-
tion, nor the condition of pump depletion signs its failure. We found that the degree of
coherence of the pump after the interaction is a univocal parameter that discriminates
the working regimes of the amplifiers. In terms of the pump Fano factor F we found
that a deviation smaller than 10% guarantees an overlap larger than 99% between the
states predicted within the parametric approximation and those evaluated by the exact
Hamiltonian.
For long interaction times the approximation breaks down, and the quantum character

of the pump mode is revealed. Oscillations in the pump number probability appear and,
correspondingly, the Wigner function of the signal mode assumes negative values and
resembles a Schrödinger-cat state.
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