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Maximum-likelihood estimation of the density matrix
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We present a universal technique for quantum-state estimation based on the maximum-likelihood method.
This approach provides a positive-definite estimate for the density matrix from a sequence of measurements
performed on identically prepared copies of the system. The method is versatile and can be applied to multi-
mode radiation fields as well as to spin systems. The incorporation of physical constraints, which is natural in
the maximume-likelihood strategy, leads to a substantial reduction of statistical errors. Numerical implementa-
tion of the method is based on a particular form of the Gauss decomposition for positive-definite Hermitian
matrices.

PACS numbds): 03.67—a, 03.65.Bz

In quantum mechanics, the achievable information on ajuantum-tomographic techniqugd,9]. In quantum tomog-

physical system is encoded into the density ma&rbwhich raphy the expectation value of an operator is obtained by
allows one to evaluate all possible expectation valueiveraging a special functiofso-called “pattern functiony
through the Born statistical ruléd)=Tr(¢0). In order to of experimental data of a sufficiently complete set of
obtain full information on a quantum system we need toobservables—a “quorum” of observables. In homodyne to-
estimate its density matrix. In principle, this can be accomInography the quorum observables are the quadratures of the
plished by successive measurements on repeated identiclectromagneti¢e.m) field for varying phase with respect to
preparations of the same system. With a proper choice of th&€ local oscillator. Hence, typically, a matrix element of the
measurements, and after collecting a suitably large numbéiantum state is obtained by averaging its pertaining pattern
of data, we can arrive at a reliable knowledge of the quantunfnction over data. This method is very general and efficient;
state of the system. however, in the averaging procedure, the matrix elements are
The problem of inferring the complete quantum state fromallowed to fluctuate statistically through negative values,
experimental data has received a lot of attention over the pafith resulting large statistical errors.
several years. Physical systems whose quantum state has!h contrast, the ML methoq estimates th_e quantum state as
been fully characterized in recent experiments include now & whole. Such a procedure incorporagepriori knowledge
single light mod€ 1], a diatomic molecul§2], a trapped ion about relations t_)_etyveen elements_ of _the density mat_rlx. '_rhls
[3], and an atomic bearfd]. These fascinating advances guarantees positivity and normalization of the matrix, with
stimulate further theoretical research in two main directionsthe result of a substantial reduction of statistical errors. These
on one hand, in implementing effective measuremenfdvantages of the ML approach are inevitably related to in-
schemes that connect the density matrix to directly obsercreased computational complexity of the estimation proce-
able quantities, on the other hand, in designing efficient datguré, which remains a highly nontrivial problem, even if we
processing algorithms in a practical experimental setup i#€SOrt to numerical means. We present in this Rapid Com-
order to extract the optimal amount of information on themMunication an alternative general solution to this problem,
quantum state. In a laboratory, we always deal with finitehich provides an effective numerical algorithm for the ML
ensembles of copies of the measured sy§@®jmin addition, ~ €stimation of the density matrix. _
the process of detection is usually affected by various imper- The task of estimating the density matrix has been ap-
fections. This implies the need of developing novel toolsProached also using the least-squares invergibd,11],

specifically designed to process realistic and finite experibased on the assumption of experimental Gaussian noise. In
mental samples. contrast, our estimation strategy will be derived from the

In this Rapid Communication we present a general€Xact statistical description of raw results. Furthermore,

purpose method for quantum-state estimation based on ttBough the least-squares inversion allows one to reduce the
maximum-likelihood(ML ) approach6,7]. We consider the statistical uncertainty _by appropriate regularization, it does
statistical treatment of a sample of measurements performdept guarantee in principle that the reconstructed density ma-
on repeated preparations of a given system. The approadHX IS positive deflnlfce. So far, the positivity constraints have
presented in this Rapid Communication is very general: iP€en applied only in the much simpler problem of recon-
allows one to extract the information on the quantum statétructing the photon-number distributid7,10]. Here, we
from data collected in a generic scheme, without assumin il demonstrate how to implement in numerical calculations
any specific form of the measurement. Its principle of operafhe complete set of physical constraints on the density ma-
tion is to find the quantum state that is most likely to gener-riX. _ o o _
ate the observed data. This idea is quantified and imple- YVe start with the derivation of the likelihood functional
mented using the concept of the likelihood functional. L(e), which links the raw experimental results with the ob-
The ML strategy is an entirely different approach to ject to be reconstructed, i.e., the density matrix. The physical
guantum-state measurement compared to the standasituation we have in mind is an experiment consistingNof
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measurements performed on identically prepared copies of ll-dimensional Hilbert space, the number of real parameters

given system. Quantum mechanically, each measurement jig the matrixT is M + 2M (M — 1)/2= M2, which equals the
described by a positive operator-valued meas#®VM).  number of independent real parameters for a Hermitian ma-
We shall denote byF; the POVM corresponding to the par- trix. This confirms that our parametrization is minimal, up to
ticular measurement and the observed outcome ofitlhhe the unit trace condition.

run. The likelihood functional(¢) describes the probability [N numerical calculations, it is convenient to replace the
of obtaining the set of outcomes for a given density matrixiikelihood functional by its natural logarithm, which of

¢. For measurements performed on repeated preparations purse d'oes no'; change the Ioc;ation Of. the maX‘.m“.m- Thus
the system, it is given by the product the function subjected to numerical maximization is given by
! N
N ~ Ay A N
~ - L(T)y=2>, InTr(TTTF)—\Tr(T™T), 3
£@)-T1 TeF). & D=g nTTTHATAD. @
=1

R where\ is a Lagrange multiplier accounting for normaliza-
After the experiment is performed, the operatdisare de-  tjon of ¢ that equals the total number of measureméts
termined by the outcomes of the measurements. The U413, This formulation of the maximization problem allows
known element of the above expression, which we want tgne to apply standard numerical procedures for searching the
infer from our data, is the density matrix describing the mea- aximum over theV 2 real parameters of the matri The

sured_ ense_zmble. Th_e general estimation strategy of the M xamples presented below use the downhill simplex
technique is to maximize the likelihood functional over themethod[lS]

set of the density matrices. Several properties of the likeli-

hood functional v found. if trict I ¢ Our first example is the application of the ML estimation
1000 functional aré easily found, It we Testrict Oursewes 1o;, guantum homodyne tomography of a single-mode radia-
finite-dimensional Hilbert spaces. In this case, it can be ea

_ o ) ) ion field [8], which is so far the most successful method in
ily proved that£(e) is a concave function defined on a measuring nonclassical states of liht14]. The experimen-
convex and closed set of density matrices. Therefore, itg) apparatus used in this technique is the homodyne detec-
maximum is achieved either on a single isolated point, or ORor, The realistic, imperfect homodyne measurement is de-

a convex subset of density matrices. In the latter case, thecribed by the positive operator-valued measure
experimental data are insufficient to provide a unique esti- -
(x=7%,)

mate for the density matrix using the ML strategy. On the (X 0)= 1 exp( _
other hand, the existence of a single maximum allows us to ’ V(1= 1) 1-9

assign unambiguously the ML estimate for the density ma- ) . ~
trix. This estimate satisfies all the physical constraints, suck/nere 7 is the detector efficiency anx, is the quadrature

as normalization and positivity. operator, depending on the externally adjustable local oscil-
The ML estimation of the quantum state, despite its erator (LO) pha§e¢ [16]. . .

egant general formulation, presents a highly nontrivial con- _ Aftér repeating the measuremeiitimes, we obtain a set

strained optimization problem, even if we resort to purely®f Pairs &i;¢;) consisting of the outcomg; and the LO

numerical means. The central difficulty lies in the appropri-Phase ¢; for the ith run, wherei=1,... N. The log-

ate parametrization of the set of all density matrices. Thdikelihood functional is given by Eq.(3) with

parameter space should be of the minimum dimension in=7(x; ;¢;). Of course, for a light mode it is necessary to

order to preserve the maximum of the likelihood function astruncate the Hilbert space to a finite-dimensional basis. We

a single isolated point. Additionally, the expression of quan-shall assume that the highest Fock state Mas1 photons,

tum expectation values in terms of this parametrizationi.e., that the dimension of the truncated Hilbert spachklis

should enable fast evaluation of the likelihood function, asgq; the expectation Ti TTH(x; ¢)] it is necessary to use an
this step is performed many times in the course of numericabyhression that is explicitly positive, in order to protect the

maximization. algorithm against the occurrence of small negative numerical

Here, we introduce a parametrization of the set of densityguments of the logarithm function. A simple derivation
matrices that provides an efficient algorithm for maximiza- ia|qs

tion of the likelihood function. We represent the density ma-

)

trix in the form T TITH(X; )]
o=T'T, 2 M—1 k [k—] 2
. = K TIn+j)Bnsin(nx)em| , (5
which automatically guarantees thatis positive and Her- IZO jgo nZO< ITIn+1)Bnj n{nx) ®

mitian. The remaining condition of unit trace =1 willbe  where Busjn=[(" 1) 7"(1— 7)1]*2 and  (n|x)

taken into account using the method of Lagrange multipliers.:H (X)exp(—x32)/\2"n1 =2 are eigenstates of the har-
n !

n orggr to achieve the mm@al parametrllzauor.], We asSUMG,onic oscillator in the position representatioftz{x) being
that T is a complex lower triangular matrix, with real ele- the nth Hermite polynomial.

ments on the diagonal. This form af is motivated by the We have applied the ML technique to reconstruct the den-
Cholesky decomposition known in numerical analysig]  sity matrix in the Fock basis from Monte Carlo simulated
for the arbitrary non-negative Hermitian matrix. For an homodyne statistics. Figure 1 depicts the matrix elements of

010304-2



RAPID COMMUNICATIONS

MAXIMUM-LIKELIHOOD ESTIMATION OF THE.. .. PHYSICAL REVIEW A 61 010304R)

FIG. 1. ML reconstruction of the density matrix of a single-mode radiation field. On the left are the matrix elements obtained for a

coherent state WitbéTé>= 1 photon; on the right for a squeezed vacuum w&Fé>:O.5 photons. In both cases the ML technique has been
applied to a sample of 50 000 simulated homodyne data and for quantum effiejer&92%6.

the density operator as obtained for a coherent state andeach run these parameters are chosen randomly. The POVM
squeezed vacuum, respectively. Remarkably, only 50 000 halescribing the measurement is given by the right-hand side
modyne data have been used for quantum efficiency at phasf Eq. (4), with x,, replaced by, ., and thus the probabil-
todetectorsp=80%. The truncation dlmen5|o(vvh|ch de- ity distribution is written as

pends only on the available computational resources—
typically M=10 on an Intel 686, 512 Mb RAM, runnin Aia A
FEEDHATyLinux 5.2) is not a crucial parameter, since mo?e T T THOKG 6,10, 1)
excited states can be reconstructed by adaptive techniques

[18]. = T
Since statistical aspects of standard quantum homodyne k§<2 m?‘mz (kiko| T mym,)
tomography have been thoroughly studjéd], this gives us Iing | g
an opportunity to compare it with the ML estimation. In the 2

tomographic approach, statistical errors are known to grow X<m1mz|UT(9,</f0,l//1)|n1+J',n2>Bn1+j,nl<n1|X>

rapidly with decreasing efficiency of the detector. In con-

trast, the elements of the density matrix reconstructed using

the ML approach remain bounded, as the whole matrix must (6)

satisfy positivity and normalization constraints. This results

in much smaller statistical errors. As a comparison one coul§ye have simulated an experiment for the two orthogonal

see that the same precision of the reconstructions in Fig. dtates| W)= (|00)+|11))/+/2 and|¥,)=(]01)+|10))/2.

could be achieved using 1010 data samples with the con- \we reconstructed the density matrix in the two-mode Fock

ventional quantum tomography of Ref8]. On the other pasis using the ML technique. The results are depicted in

hand, in order to find numerically the ML estimate we needrig. 2.

to seta priori the cutoff parameter for the photon number,  Finally, we mention that the ML procedure can be applied

and its value is limited by increasing computation time.  also for reconstructing the density matrix of spin systems.
Another relevant example is the reconstruction of theFor examp]e’ let us consident repeated preparations of a

quantum state of the two-mode field using single-LO homopair of spin-1/2 particles. The particles are shared by two

dyning[19]. Here, the full joint density matrix can be mea- parties. In each run, the parties select randomly and indepen-

sured by scanning the quadratures of all possible linear confently from each other a direction along which they perform

binations of modes. For two modes the measured quadratuggin measurement. The obtained result is described by the

operator is given byxg, , =(ae"'¥ocos6+be "isind  joint projection operator(spin coherent state§20]) F;
+H.c.)\N2, where @,4q,14,) e X[0,27r], S? being the =]Q8,QE(QA QF|, whereQ” and QP are the vectors on
Poincaresphere and one phase ranging between 0 andr2  the Bloch sphere corresponding to the outcomes ofithe

FIG. 2. ML reconstruction of
the density matrix of a two-mode
radiation field. On the left are the
matrix elements obtained for the
state |¥,)=(|00)+|11))/+2; on
the right for |¥,)=(|01)
+]10))/y2. For |¥,) we used
100 000 simulated homodyne data
and 7=80%; for |¥,) we used
20000 data andy=90%.

an, 1ls an, 1s
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distribution on the parameter space. In our case, this space is
spanned byM? real parameters that constitute the triangular

matrix T. We shall denote these parameters in the vector
form ast. The formal distribution is given, up to the normal-
ization constant, bys[ Tr(T™T) — 1]expL(T). In the limit of

the large number of measurements, EKp) takes the form

of the Gaussiafi21], with the quadratic form in the exponent
given by the matrixG=— 9°L/atat’. Furthermore, the con-

straint Tr(TTT) =1 means locally orthogonality to the gradi-
_ T3 ; ;
FIG. 3. ML reconstruction of the density matrix of a pair of €Ntu=dTr(T'T)/ét. The covariance matrix for the param-

spin-1/2 particles in the singlet state. The particles are shared b?terSt is consequently given bj2?2]
two parties. In each run, the parties select randomly and indepen- v=Gl- ¢ luulc Yu'c lu. (8)
dently from each other a direction along which they perform spin
measurement. The matrix elements have been obtained by a sampi¢ith this result, we can estimate errors for the density matrix
of 500 simulated data. using simply the propagation law applied to Eg).
Summarizing, we have developed a universal maximum
run, and the indices andB refer to the two particles. As in Jikelihood algorithm for estimating the density matrix. With
the previous examples, it is convenient to use an expressigspect to conventional quantum tomography this method
for the quantum expectation value T#(T %) that is explic-  has the great advantage of needing much smaller experimen-
itly positive. The suitable form is tal samples, making experiments with low data rates now
feasible, albeit with a truncation of the Hilbert space dimen-
sion. We have shown that the method is general and the
algorithm has a solid methodological background, its reli-
ability being confirmed in a number of Monte Carlo simula-
where| ) is an orthonormal basis in the Hilbert space of thetions.
two particles. The result of a simulated experiment with only We would like to thank Zdenek Hradil for interesting dis-
500 data for the reconstruction of the density matrix of thecussions. This work has been cosponsored by MURST under
singlet state is shown in Fig. 3. the project “Amplificazione e Rivelazione di Radiazione
We conclude this Rapid Communication with a brief dis- Quantistica.” K.B. is supported by INFM and by KBN Grant
cussion of the statistical uncertainty of the ML estimate. TheNo. 2P03B 089 16. M.F.S. is supported by INFM PAIS
likelihood function can be formally regarded as a probability1999.

Pnm, 1s

THTTF) =2 KulTIOM QPP (7)
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