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Maximum-likelihood estimation of the density matrix
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We present a universal technique for quantum-state estimation based on the maximum-likelihood method.
This approach provides a positive-definite estimate for the density matrix from a sequence of measurements
performed on identically prepared copies of the system. The method is versatile and can be applied to multi-
mode radiation fields as well as to spin systems. The incorporation of physical constraints, which is natural in
the maximum-likelihood strategy, leads to a substantial reduction of statistical errors. Numerical implementa-
tion of the method is based on a particular form of the Gauss decomposition for positive-definite Hermitian
matrices.

PACS number~s!: 03.67.2a, 03.65.Bz
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In quantum mechanics, the achievable information o
physical system is encoded into the density matrix%̂, which
allows one to evaluate all possible expectation val
through the Born statistical rulêÔ&5Tr(%̂Ô). In order to
obtain full information on a quantum system we need
estimate its density matrix. In principle, this can be acco
plished by successive measurements on repeated iden
preparations of the same system. With a proper choice of
measurements, and after collecting a suitably large num
of data, we can arrive at a reliable knowledge of the quan
state of the system.

The problem of inferring the complete quantum state fr
experimental data has received a lot of attention over the
several years. Physical systems whose quantum state
been fully characterized in recent experiments include no
single light mode@1#, a diatomic molecule@2#, a trapped ion
@3#, and an atomic beam@4#. These fascinating advance
stimulate further theoretical research in two main directio
on one hand, in implementing effective measurem
schemes that connect the density matrix to directly obs
able quantities, on the other hand, in designing efficient d
processing algorithms in a practical experimental setup
order to extract the optimal amount of information on t
quantum state. In a laboratory, we always deal with fin
ensembles of copies of the measured system@5#. In addition,
the process of detection is usually affected by various imp
fections. This implies the need of developing novel to
specifically designed to process realistic and finite exp
mental samples.

In this Rapid Communication we present a gener
purpose method for quantum-state estimation based on
maximum-likelihood~ML ! approach@6,7#. We consider the
statistical treatment of a sample of measurements perfor
on repeated preparations of a given system. The appro
presented in this Rapid Communication is very genera
allows one to extract the information on the quantum st
from data collected in a generic scheme, without assum
any specific form of the measurement. Its principle of ope
tion is to find the quantum state that is most likely to gen
ate the observed data. This idea is quantified and im
mented using the concept of the likelihood functional.

The ML strategy is an entirely different approach
quantum-state measurement compared to the stan
1050-2947/99/61~1!/010304~4!/$15.00 61 0103
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quantum-tomographic techniques@8,9#. In quantum tomog-
raphy the expectation value of an operator is obtained
averaging a special function~so-called ‘‘pattern function’’!
of experimental data of a sufficiently complete set
observables—a ‘‘quorum’’ of observables. In homodyne
mography the quorum observables are the quadratures o
electromagnetic~e.m.! field for varying phase with respect t
the local oscillator. Hence, typically, a matrix element of t
quantum state is obtained by averaging its pertaining pat
function over data. This method is very general and efficie
however, in the averaging procedure, the matrix elements
allowed to fluctuate statistically through negative valu
with resulting large statistical errors.

In contrast, the ML method estimates the quantum stat
a whole. Such a procedure incorporatesa priori knowledge
about relations between elements of the density matrix. T
guarantees positivity and normalization of the matrix, w
the result of a substantial reduction of statistical errors. Th
advantages of the ML approach are inevitably related to
creased computational complexity of the estimation pro
dure, which remains a highly nontrivial problem, even if w
resort to numerical means. We present in this Rapid Co
munication an alternative general solution to this proble
which provides an effective numerical algorithm for the M
estimation of the density matrix.

The task of estimating the density matrix has been
proached also using the least-squares inversion@10,11#,
based on the assumption of experimental Gaussian nois
contrast, our estimation strategy will be derived from t
exact statistical description of raw results. Furthermo
though the least-squares inversion allows one to reduce
statistical uncertainty by appropriate regularization, it do
not guarantee in principle that the reconstructed density
trix is positive definite. So far, the positivity constraints ha
been applied only in the much simpler problem of reco
structing the photon-number distribution@7,10#. Here, we
will demonstrate how to implement in numerical calculatio
the complete set of physical constraints on the density
trix.

We start with the derivation of the likelihood functiona
L(%̂), which links the raw experimental results with the o
ject to be reconstructed, i.e., the density matrix. The phys
situation we have in mind is an experiment consisting ofN
©1999 The American Physical Society04-1
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measurements performed on identically prepared copies
given system. Quantum mechanically, each measureme
described by a positive operator-valued measure~POVM!.
We shall denote byF̂i the POVM corresponding to the pa
ticular measurement and the observed outcome of thei th
run. The likelihood functionalL(%̂) describes the probability
of obtaining the set of outcomes for a given density ma
%̂. For measurements performed on repeated preparatio
the system, it is given by the product

L~ %̂ !5)
i 51

N

Tr~ %̂F̂i !. ~1!

After the experiment is performed, the operatorsF̂i are de-
termined by the outcomes of the measurements. The
known element of the above expression, which we wan
infer from our data, is the density matrix describing the m
sured ensemble. The general estimation strategy of the
technique is to maximize the likelihood functional over t
set of the density matrices. Several properties of the lik
hood functional are easily found, if we restrict ourselves
finite-dimensional Hilbert spaces. In this case, it can be e
ily proved that L(%̂) is a concave function defined on
convex and closed set of density matrices. Therefore,
maximum is achieved either on a single isolated point, or
a convex subset of density matrices. In the latter case,
experimental data are insufficient to provide a unique e
mate for the density matrix using the ML strategy. On t
other hand, the existence of a single maximum allows u
assign unambiguously the ML estimate for the density m
trix. This estimate satisfies all the physical constraints, s
as normalization and positivity.

The ML estimation of the quantum state, despite its
egant general formulation, presents a highly nontrivial c
strained optimization problem, even if we resort to pure
numerical means. The central difficulty lies in the approp
ate parametrization of the set of all density matrices. T
parameter space should be of the minimum dimension
order to preserve the maximum of the likelihood function
a single isolated point. Additionally, the expression of qua
tum expectation values in terms of this parametrizat
should enable fast evaluation of the likelihood function,
this step is performed many times in the course of numer
maximization.

Here, we introduce a parametrization of the set of den
matrices that provides an efficient algorithm for maximiz
tion of the likelihood function. We represent the density m
trix in the form

%̂5T̂†T̂, ~2!

which automatically guarantees that%̂ is positive and Her-
mitian. The remaining condition of unit trace Tr%̂51 will be
taken into account using the method of Lagrange multiplie
In order to achieve the minimal parametrization, we assu
that T̂ is a complex lower triangular matrix, with real ele
ments on the diagonal. This form ofT̂ is motivated by the
Cholesky decomposition known in numerical analysis@12#
for the arbitrary non-negative Hermitian matrix. For a
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M-dimensional Hilbert space, the number of real parame
in the matrixT̂ is M12M (M21)/25M2, which equals the
number of independent real parameters for a Hermitian
trix. This confirms that our parametrization is minimal, up
the unit trace condition.

In numerical calculations, it is convenient to replace t
likelihood functional by its natural logarithm, which o
course does not change the location of the maximum. T
the function subjected to numerical maximization is given

L~ T̂!5(
i 51

N

ln Tr~ T̂†T̂F̂i !2l Tr~ T̂†T̂!, ~3!

wherel is a Lagrange multiplier accounting for normaliz
tion of %̂ that equals the total number of measurementsN
@13#. This formulation of the maximization problem allow
one to apply standard numerical procedures for searching
maximum over theM2 real parameters of the matrixT̂. The
examples presented below use the downhill simp
method@15#.

Our first example is the application of the ML estimatio
in quantum homodyne tomography of a single-mode rad
tion field @8#, which is so far the most successful method
measuring nonclassical states of light@1,14#. The experimen-
tal apparatus used in this technique is the homodyne de
tor. The realistic, imperfect homodyne measurement is
scribed by the positive operator-valued measure

Ĥ~x;w!5
1

Ap~12h!
expS 2

~x2Ah x̂w!2

12h
D , ~4!

whereh is the detector efficiency andx̂w is the quadrature
operator, depending on the externally adjustable local os
lator ~LO! phasew @16#.

After repeating the measurementN times, we obtain a se
of pairs (xi ;w i) consisting of the outcomexi and the LO
phase w i for the i th run, where i 51, . . . ,N. The log-
likelihood functional is given by Eq. ~3! with F̂i

[Ĥ(xi ;w i). Of course, for a light mode it is necessary
truncate the Hilbert space to a finite-dimensional basis.
shall assume that the highest Fock state hasM21 photons,
i.e., that the dimension of the truncated Hilbert space isM.
For the expectation Tr@ T̂†T̂Ĥ(x;w)# it is necessary to use a
expression that is explicitly positive, in order to protect t
algorithm against the occurrence of small negative numer
arguments of the logarithm function. A simple derivatio
yields

Tr@ T̂†T̂Ĥ~x;w!#

5 (
k50

M21

(
j 50

k U(
n50

k2 j

^kuT̂un1 j &Bn1 j ,n^nux&einwU2

, ~5!

where Bn1 j ,n5@( n
n1 j )hn(12h) j #1/2 and ^nux&

5Hn(x)exp(2x2/2)/A2nn!p1/2 are eigenstates of the ha
monic oscillator in the position representation—Hn(x) being
the nth Hermite polynomial.

We have applied the ML technique to reconstruct the d
sity matrix in the Fock basis from Monte Carlo simulate
homodyne statistics. Figure 1 depicts the matrix element
4-2
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FIG. 1. ML reconstruction of the density matrix of a single-mode radiation field. On the left are the matrix elements obtaine

coherent state witĥâ†â&51 photon; on the right for a squeezed vacuum with^â†â&50.5 photons. In both cases the ML technique has b
applied to a sample of 50 000 simulated homodyne data and for quantum efficiencyh580%.
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the density operator as obtained for a coherent state a
squeezed vacuum, respectively. Remarkably, only 50 000
modyne data have been used for quantum efficiency at p
todetectorsh580%. The truncation dimension~which de-
pends only on the available computational resource
typically M510 on an Intel 686, 512 Mb RAM, running
REDHAT Linux 5.2! is not a crucial parameter, since mo
excited states can be reconstructed by adaptive techni
@18#.

Since statistical aspects of standard quantum homod
tomography have been thoroughly studied@17#, this gives us
an opportunity to compare it with the ML estimation. In th
tomographic approach, statistical errors are known to g
rapidly with decreasing efficiencyh of the detector. In con-
trast, the elements of the density matrix reconstructed u
the ML approach remain bounded, as the whole matrix m
satisfy positivity and normalization constraints. This resu
in much smaller statistical errors. As a comparison one co
see that the same precision of the reconstructions in Fi
could be achieved using 107– 108 data samples with the con
ventional quantum tomography of Ref.@8#. On the other
hand, in order to find numerically the ML estimate we ne
to seta priori the cutoff parameter for the photon numbe
and its value is limited by increasing computation time.

Another relevant example is the reconstruction of
quantum state of the two-mode field using single-LO hom
dyning @19#. Here, the full joint density matrix can be me
sured by scanning the quadratures of all possible linear c
binations of modes. For two modes the measured quadra
operator is given by x̂uc0c1

5(âe2 ic0 cosu1b̂e2ic1 sinu

1H.c.)/A2, where (u,c0 ,c1)PS23@0,2p#, S2 being the
Poincare´ sphere and one phase ranging between 0 and 2p. In
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each run these parameters are chosen randomly. The PO
describing the measurement is given by the right-hand s
of Eq. ~4!, with x̂w replaced byx̂uc0c1

, and thus the probabil-
ity distribution is written as

Tr@ T̂†T̂Ĥ~x;u,c0 ,c1!#

5 (
k1 ,k2
j ,n2

U (
m1 ,m2

n1

^k1k2uT̂um1m2&

3^m1m2uÛ†~u,c0 ,c1!un11 j ,n2&Bn11 j ,n1
^n1ux&U2

.

~6!

We have simulated an experiment for the two orthogo
statesuC1&5(u00&1u11&)/A2 and uC2&5(u01&1u10&)/A2.
We reconstructed the density matrix in the two-mode Fo
basis using the ML technique. The results are depicted
Fig. 2.

Finally, we mention that the ML procedure can be appli
also for reconstructing the density matrix of spin system
For example, let us considerN repeated preparations of
pair of spin-1/2 particles. The particles are shared by t
parties. In each run, the parties select randomly and inde
dently from each other a direction along which they perfo
spin measurement. The obtained result is described by
joint projection operator~spin coherent states@20#! F̂i

5uV i
A ,V i

B&^V i
A ,V i

Bu, whereV i
A andV i

B are the vectors on
the Bloch sphere corresponding to the outcomes of thei th
e

ta
FIG. 2. ML reconstruction of
the density matrix of a two-mode
radiation field. On the left are the
matrix elements obtained for th
state uC1&5(u00&1u11&)/A2; on
the right for uC2&5(u01&
1u10&)/A2. For uC1& we used
100 000 simulated homodyne da
and h580%; for uC2& we used
20 000 data andh590%.
4-3
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run, and the indicesA andB refer to the two particles. As in
the previous examples, it is convenient to use an expres
for the quantum expectation value Tr(T̂†T̂F̂i) that is explic-
itly positive. The suitable form is

Tr~ T̂†T̂F̂i !5(
m

z^muT̂uV i
A ,V i

B& z2, ~7!

whereum& is an orthonormal basis in the Hilbert space of t
two particles. The result of a simulated experiment with o
500 data for the reconstruction of the density matrix of
singlet state is shown in Fig. 3.

We conclude this Rapid Communication with a brief d
cussion of the statistical uncertainty of the ML estimate. T
likelihood function can be formally regarded as a probabi

FIG. 3. ML reconstruction of the density matrix of a pair
spin-1/2 particles in the singlet state. The particles are share
two parties. In each run, the parties select randomly and inde
dently from each other a direction along which they perform s
measurement. The matrix elements have been obtained by a sa
of 500 simulated data.
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distribution on the parameter space. In our case, this spa
spanned byM2 real parameters that constitute the triangu
matrix T̂. We shall denote these parameters in the vec
form ast. The formal distribution is given, up to the norma
ization constant, byd@Tr(T̂†T̂)21#expL(T̂). In the limit of
the large number of measurements, expL(T̂) takes the form
of the Gaussian@21#, with the quadratic form in the exponen
given by the matrixG52]2L/]t]t8. Furthermore, the con
straint Tr(T̂†T̂)51 means locally orthogonality to the grad
ent u5] Tr(T̂†T̂)/]t. The covariance matrix for the param
eterst is consequently given by@22#

V5G212 G21uuTG21/uTG21u . ~8!

With this result, we can estimate errors for the density ma
using simply the propagation law applied to Eq.~2!.

Summarizing, we have developed a universal maxim
likelihood algorithm for estimating the density matrix. Wit
respect to conventional quantum tomography this met
has the great advantage of needing much smaller experim
tal samples, making experiments with low data rates n
feasible, albeit with a truncation of the Hilbert space dime
sion. We have shown that the method is general and
algorithm has a solid methodological background, its re
ability being confirmed in a number of Monte Carlo simul
tions.
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