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Universal homodyne tomography with a single local oscillator
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We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field
using homodyne detection with a single local oscillator. In this method the local oscillator scans over all
possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of
the measurement is studied on the basis of Monte Carlo simulations. We also provide an application of this
method in tomographic testing of the Greenberger-Horne-Zeilinger state.

PACS number~s!: 42.50.Dv, 03.65.2w
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I. INTRODUCTION

Optical homodyne tomography is a well-established qu
titative method for measuring the quantum state of radia
and for obtaining the expectation value of arbitrary obse
ables of the field@1–3# ~for a review, see Ref.@4#!. The
success of optical homodyne tomography has stimulated
search relating to the state-reconstruction procedures in o
fields, such as in the realm of atomic@5#, molecular@6#, and
ion-trap @7# physics. As a matter of fact, the tomograph
method is a kind of universal detection technique@8#, with
which one can measure any observableO of the field by
averaging a suitable unbiased estimatorE@O#(x,f) over the
homodyne datax at random phase valuesf. Single-mode
homodyne tomography can be immediately generalized
multimode fields. For factorized multimode operatorsO
5O1^ O2^ •••^ On the corresponding estimator is just th
product of the estimators for each of the single-mode op
tors O1 ,O1 , . . . ,On . By linearity the estimator can then b
extended to generic multimode operators. However, suc
simple generalization requires a separate homodyne m
surement for each of the modes, which cannot be achieve
practice when the modes of the field are not spa
temporally separated. For this reason, tomographic meth
have been devised which either use only a single local os
lator ~LO! @9# or avoid the use of conventional homodyn
detection@10#. However, both the methods work for on
two modes of the field, and the self-homodyne method
Ref. @10# is suitable only in special experimental situatio
~e.g., in the tomography of parametrically down-conver
radiation!. Therefore, a more general multimode tomog
phic method is needed, especially in consideration of
possibility of a precise analysis for pulsed fields, for whi
the problem of mode matching between the LO and the
tected fields~determined by their relative spatio-tempor
overlap! @11# gives a detrimental contribution to the overa
quantum efficiency.

In this paper we propose a general method for measu
an arbitrary observable of the multimode electromagn
field, which uses homodyne detection with asingleLO. We
provide the rule for evaluating the ‘‘unbiased estimator’’ o
generic multimode operator. The quantum expectation va
1050-2947/99/61~1!/013806~8!/$15.00 61 0138
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of the operator can then be obtained for any unknown s
of the radiation field through an average of this estima
over the homodyne outcomes that are collected usin
single LO which scans over different linear combinations
the incident modes. The paper is organized as follows
Sec. II we present the general method for obtaining the e
mator pertaining to an arbitrary multimode operator. Up
averaging this estimator over the homodyne outcomes,
obtains the quantum expectation value of the correspond
operator. We specialize to observables corresponding to
matrix elements of the multimode density operator and to
total number of photons. In the two-mode case we explic
derive the estimator for the four-dimensionalQ function and
for the moments-generating function of the total number
photons. In Sec. III we investigate the experimental con
tions for extracting the joint photon-number probability a
the distribution of the total number of photons for two-mo
quantum states. We present the results of some Monte C
simulations for the twin-beam state that is produced by n
degenerate parametric amplification~spontaneous down
conversion!. We average the estimators obtained in Sec
over the homodyne data that are distributed according to
theoretical homodyne probability evaluated in the Append
The simulations show that the measurement is feasible
quantum efficiency values of the homodyne detector in
80–90 % range and with the number of experimental d
samples of order 106–107. In Sec. IV we show an application
of our method in measurement of the three-particle ma
mally entangled state called the Greenberger-Hor
Zeilinger~GHZ! state. In such a case the number of radiat
modes is six and a more suitable arrangement of the tom
raphic machine requires the use of three LO’s. The result
Monte Carlo simulations show that for homodyne detect
with quantum efficiency valueh585%, one needs about 107

data samples to reconstruct the state with a relatively sm
statistical error. Finally, some conclusions are drawn
Sec. V.

II. THE GENERAL METHOD

For a single-mode radiation field one has the followi
resolution of the identity on the Hilbert-Schmidt space:
©1999 The American Physical Society06-1
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O5E d2z

p
Tr@OD†~z!#D~z!, ~1!

where O is a Hilbert-Schmidt operator, the integral is e
tended to the complex planeC for z, and D(z)5 exp(za†

2z*a) denotes the displacement operator for the field m
with annihilation and creation operatorsa and a†, respec-
tively, having the commutation relation@a,a†#51. Equation
~1! simply follows from the orthogonality relation for dis
placement operators Tr@D(z)D†(z8)#5d2(z2z8), d2(z) de-
noting the Dirac delta function on the complex plane. Eq
tion ~1! is the starting point of our method; it can be eas
generalized to any number of modes as follows:

O5E d2z0

p E d2z1

p
. . . E d2zM

p

3TrH O expF(
l 50

M

~2zlal
†1zl* al !G J

3expF(
l 50

M

~zlal
†2zl* al !G , ~2!

whereal andal
† , with l 50, . . . ,M and @al ,al 8

†
#5d l l 8 , are

the annihilation and creation operators, respectively, of
M11 independent modes, andO now denotes an operato
over all the modes. Using the following hyperspherical p
rametrization forzlPC :

z05
i

2
ku0~uW !eic08

i

2
keic0 cosu1 ,

z15
i

2
ku1~uW !eic18

i

2
keic1 sinu1 cosu2 ,

z25
i

2
ku2~uW !eic28

i

2
keic2 sinu1 sinu2 cosu3 ,

. . . ~3!

zM215
i

2
kuM21~uW !eicM21

8
i

2
keicM21 sinu1 sinu2••• sinuM21 cosuM ,

zM5
i

2
kuM~uW !eicM

8
i

2
keicM sinu1 sinu2••• sinuM21 sinuM ,

where kP@0,̀ ); c lP@0,2p# for l 50,1, . . . ,M ; and u l
P@0,p/2# for l 51,2, . . . ,M , Eq. ~2! can be rewritten as fol-
lows:
01380
e

-

e

-

O5E dm@cW #E dm@uW #E
0

1`

dkS k

2D 2M11 1

M !

3Tr$O exp@2 ikX~uW ,cW !#%exp@ ikX~uW ,cW !#. ~4!

Here we have used the notation

E dm@cW #8)
l 50

M E
0

2pdc l

2p
,

E dm@uW #82MM !)
l 51

M E
0

p/2

du l sin2(M2 l )11u l cosu l ,

~5!

X~uW ,cW !5
1

2
@A†~uW ,cW !1A~uW ,cW !#, ~6!

A~uW ,cW !5(
l 50

M

e2 ic lul~uW !al . ~7!

Notice that, thanks to the parametrization in Eq.~3!, where
( l 50

1` ul
2(uW )51, one has the commutation relatio

@A(uW ,cW ),A†(uW ,cW )#51, which implies that A(uW ,cW ) and
A†(uW ,cW ) themselves are annihilation and creation operato
respectively, of a bosonic mode. Also, by scanning all valu
of u lP@0,p/2# andc lP@0,2p#, all possible linear combina
tions of the modes described by annihilation operatorsal ,
with l 50, . . . ,M , are obtained.

For a single mode of the radiation field, the experimen
homodyne probability distribution of a field quadrature wi
quantum efficiencyh,1 is a Gaussian convolution with
varianceDh

25(12h)/4h of the ideal probability distribu-

tion. Therefore, for the quadrature operatorX(uW ,cW ) in Eq.
~6!, one has the following identity for the moment
generating function:

^eikX&5 expS 12h

8h
k2D E

2`

1`

dxeikxph~x;uW ,cW !, ~8!

where ph(x;uW ,cW ) denotes the homodyne probability distr
bution of the quadratureX(uW ,cW ) with quantum efficiencyh.
Generally,h can depend on the mode itself, i.e., it is a fun
tion h5h(uW ,cW ) of the selected mode. In the following, fo
simplicity, we assumeh to be mode independent, howeve
By taking the ensemble average on each side of Eq.~4! and
using Eq.~8!, one has

^O&5E dm@cW #E dm@uW #E
2`

1`

dxph~x;uW ,cW !Eh@O#~x;uW ,cW !,

~9!

where, for a given operatorO, the functionEh@O#(x;uW ,cW ) of
x, uW , cW has the following analytic expression:
6-2
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Eh@O#~x;uW ,cW !5
kM11

M ! E
0

1`

dte2t12iAktxtM

3Tr$O:exp@22iAktX~uW ,cW !#:% ~10!

where

k5
2h

2h21
, ~11!

and : : denotes normal ordering. Equation~10! is the central
result of this paper. For any given operatorO it provides the
‘‘unbiased estimator’’ to be averaged over all homodyne o
comes of the quadratureX(uW ,cW ) in order to obtain the en
semble averagêO& for any unknown state of the radiatio
field. The homodyne outcomes forX(uW ,cW ) can be obtained
by using a single LO that is prepared in the multimode
herent statê l 50

M ug l& with g l5eic lul(u)K/2 andK@1. In
fact, in this case the rescaled zero-frequency photocurre
the output of a balanced homodyne detector is given by

i 5(
l 50

M

~g l* al1g lal
†!/K, ~12!

which corresponds to the operatorX(uW ,cW ). In the limit of a
strong LO (K→`), all moments of the currenti correspond
to the moments ofX(uW ,cW ), and the exact measurement
X(uW ,cW ) is then realized. Notice that for modesal with dif-
ferent frequencies, in the dc photocurrent in Eq.~12! each
LO with amplitudeg l selects the modeal at the same fre-
quency~and polarization!. For the effect of less-than-unit
quantum efficiency, previous considerations on Eq.~8! ap-
ply.

In order to obtain the ensemble average in Eq.~9! as an
experimental average over the homodyne outcomes,
needs to satisfy the validity conditions of the central-lim
theorem. Since in the strong LO approximation the proba
ity ph(x;uW ,cW ) must decay as a Gaussian for largex, it fol-
lows that the integral in Eq.~9! can be experimentally
sampled for anya priori unknown probability distribution
ph(x;uW ,cW ) if Eh@O#(x;uW ,cW ) increases slower than exp(kx2)
for largex, and is bounded foruxu,1`. In this case one is
guaranteed that the integral in Eq.~9! can be statistically
sampled over a sufficiently large set of data. The aver
values for different experiments will be Gaussian distribu
around the mathematical expectation in Eq.~9!, allowing es-
timation of the confidence intervals, which will decrease
the inverse square root of the number of experimental d
In general, the boundedness ofEh@O#(x;uW ,cW ) for uxu,1`
will pose lower bounds for the quantum efficiencyh below
which the measurement cannot be performed, similarly
what happens in the one-mode case@12#. This limitation is
due to the generality of the method, which is perfectly un
ased, and makes noa priori assumption on the state of th
radiation field, the only approximation being that of a stro
LO. This should be contrasted with other methods, such
the maximum entropy method@13# or the maximum likeli-
01380
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hood method@14,15#, which do not suffer such limitation on
the quantum efficiency; however, they are generally bia
and based on assumptions for the state of the radiation fi

Equation~9! can be specialized to some observablesO of
interest. In particular, one can estimate the matrix elem
^$nl%uRu$ml%& of the multimode density operatorR. This will
be obtained by averaging the following estimator:

Eh@ u$ml%&^$nl%u#~x;uW ,cW !

5e2 i ( l 50
M (nl2ml )c l

kM11

M ! )
l 50

M

3H @2 iAkul~uW !#m l2n lAn l !

m l !
J

3E
0

1`

dte2t12iAktxtM1( l 50
M (m l2n l )/2

3)
l 50

M

Ln l

m l2n l@kul
2~uW !t#, ~13!

wherem l5max(ml ,nl), n l5min(ml ,nl), andLn
a(z) denotes

the customary generalized Laguerre polynomial of varia
z. For diagonal matrix elements, Eq.~13! simplifies to

Eh@ u$nl%&^$nl%u#~x;uW ,cW !

5
kM11

M ! E
0

1`

dte2t12iAktxtM)
l 50

M

Lnl
@kul

2~uW !t# ~14!

with Ln(z) denoting the customary Laguerre polynomial inz.
Notice that the estimator in Eq.~14! does not depend on th
phasesc l ; only the knowledge of the anglesu l is needed.
Using the following identity for the Laguerre polynomia
@16#:

Ln
a01a11•••1aM1M

~x01x11•••1xM !

5 (
i 01 i 11•••1 i M5n

Li 0

a0~x0!Li 1

a1~x1!•••Li M

aM~xM !,

~15!

from Eq. ~14! one can easily derive the estimator for th
probability distribution of the total number of photonsN
5( l 50

M al
†al ,

Eh@ un&^nu#~x;uW ,cW !5
kM11

M ! E
0

1`

dte2t12iAktxtMLn
M@kt#,

~16!

where un& denotes the eigenvector ofN with eigenvaluen.
Notice that the estimator in Eq.~16! does not depend on an
of the phasesc l or the anglesu l , and thus their knowledge is
not needed in the measurement of the probability distribut
of the total number of photons.
6-3
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Now we specialize to the case of only two modes~i.e.,
M51 anduW is a scalaru). The joint photon-number prob
ability distribution is obtained by averaging the followin
estimator:

Eh@ un,m&^n,mu#~x;u,c0 ,c1!

5k2E
0

1`

dte2t12iAktxtLn~kt cos2 u!Lm~kt sin2 u!.

~17!

Analogously, using Eq.~10! one can derive the following
estimator for the four-dimensionalQ function:

Eh@ ua,b&^a,bu#~x;u,c0 ,c1!

5k2FS 2,
1

2
;2kFx2

1

2
cosu Im~a* eic0!

2
1

2
sinu Im~b* eic1!G2D , ~18!

where ua,b& with a,bPC denotes a two-mode cohere
state, andF(a,b;z) is the customary confluent hyperge
metric function ofz. The estimator~16! for the probability
distribution of the total number of photons can be written

Eh@ un&^nu#~x;u,c0 ,c1!5k2E
0

1`

dte2t12iAktxtLn
1@kt#.

~19!

For the total number of photons, one can also derive
estimator for the moment-generating function, using the g
erating function for the Laguerre polynomials@16#. One ob-
tains

Eh@za†a1b†b#~x;u,c0 ,c1!5
1

S z1
12z

k D 2

3FS 2,
1

2
;2

12z

z1
12z

k

x2D ,

~20!

where we have denoted bya andb the annihilation operators
of the two modes. For the first two moments one obtains
simple expressions

Eh@a†a1b†b#~x;u,c0 ,c1!54x21
2

k
22, ~21!

Eh@~a†a1b†b!2#~x;u,c0 ,c1!

58x41S 24

g
220D x21

6

g2 2
10

g
14. ~22!

It is worth noting that analogous estimators for the phot
number difference between the two modes are singular
one needs a cutoff procedure, similar to the one used in
@10# for recovering the correlation between the modes
means of the customary two-mode tomography. The sing
behavior of the estimators for the photon-difference ope
01380
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tors can be understood simply from the fact that to extr
information pertaining to a single mode, only one needsd
function atu50 for modea, or u5p/2 for modeb, and, in
this case, one could better use the original one-mode tom
raphy method@12# by setting the LO to the proper mode o
interest.

Finally, we note that for the case of two-mode tomog
phy, the estimatorEh can be averaged by taking the integr

^O&5E
0

2p dc0

2p E
0

2p dc1

2p E
21

1 d~cos 2u!

2

3E
2`

1`

dxph~x;u,c0 ,c1!Eh@O#~x;u,c0 ,c1!

~23!

over the random parameters cos(2u), c0, and c1. For ex-
ample, in the case of two radiation modes having the sa
frequency but orthogonal polarizations,u represents a ran
dom rotation of the polarizations, whereasc0 andc1 denote
the relative phases between the LO and the two modes
spectively.

III. NUMERICAL RESULTS FOR TWO MODES

In this section we present some Monte Carlo simulatio
in order to estimate the working experimental conditions
performing the single-LO tomography on two-mode field
We focus our attention on the twin-beam state, usually g
erated by spontaneous parametric down-conversion, nam

uC&5~12uju2!1/2(
n50

`

jnun&aun&b . ~24!

For the simulations we use the following homodyne pro
ability distribution that is derived in the Appendix:

ph~x;u,c0 ,c1!5
1

A2pDh
2~u,c0 ,c1!

3expS 2
x2

2Dh
2~u,c0 ,c1!

D , ~25!

where the varianceDh
2(u,c0 ,c1) is given by

Dh
2~u,c0 ,c1!5

11uju212uju sin 2u cos~c01c12argj!

4~12uju2!

1
12h

4h
. ~26!

In the case of two radiation modes having the same
quency but orthogonal polarizations, Eq.~25! gives the the-
oretical probability of outcomex for the homodyne measure
ment at a polarization angleu, c0 and c1 denoting the
relative phases between the LO and the two modes, res
tively.
6-4



in
ity
he

t

yin

ith
e
fo
c

-
te
av
u

s
th
LO
-
l

ll
d
it

of

ic

er-

fy
in

ex-

nt
o-

ts

s
s

ct
imu-

lt
lid

UNIVERSAL HOMODYNE TOMOGRAPHY WITH A SINGLE . . . PHYSICAL REVIEW A 61 013806
We study the tomographic measurement of the jo
photon-number probability distribution and the probabil
distribution for the total number of photons with use of t
estimators in Eqs.~17! and~19!, respectively. Moreover, we
reconstruct the matrix elements

Cn,m[ a^mu b^muC&^Cun&aun&b ~27!

that reveal the coherence of the twin-beam state by using
estimator in Eq.~13!. For the twin-beam state in Eq.~24!,
one should have

Cn,m5~12uju2!jmj* n. ~28!

The estimators have been numerically evaluated by appl
the Gauss method for calculating the integral in Eq.~13!,
which results in a fast and sufficiently precise algorithm w
use of just 150 evaluation points. Notice that in the pres
case there is no convenience in using the factorization
mula given in Ref.@9#, as in that case an integral of a produ
of functions is needed.

In Fig. 1, a Monte Carlo simulation of the joint photon
number probability distribution is presented. The simula
values compare very well with the theoretical ones. We h
done a careful analysis of the statistical errors for vario
twin-beam states by constructing histograms of deviation
the results from different simulated experiments from
theoretical ones. In comparison to the customary two-
tomography@10#, where forh51 the statistical errors satu
rate for increasingly largen andm, here we have statistica
errors that are slowly increasing versusn andm. This is due
to the fact that the range of the estimator in Eq.~17! in-
creases versusn and m. Overall we find that for any given
quantum efficiency, the statistical errors are genera
slightly larger than those obtained with the two-LO metho
The convenience of using a single LO then comes with
own price tag.

FIG. 1. Two-mode photon-number probabilityp(n,m) of the
twin-beam state of parametric fluorescence in Eq.~24! for an aver-

age number of photons per beamn̄5uju2/(12uju2)55 obtained by
a Monte Carlo simulation of the probability in Eqs.~25! and ~26!
with random parameters cos 2u, c0, andc1, using the estimator in
Eq. ~17!. On the left we have quantum efficiencyh51, and 106

data samples were used in the reconstruction. On the right, qua
efficiency h50.9, and 53106 data samples were used. The the
retical values of off-diagonalp(n,m) are zero; for a comparison
between theoretical and experimental diagonalp(n,n) probabilities
and their relative statistical errors, see analogous experimen
Figs. 2 and 3.
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By using the estimator in Eq.~19!, we have also con-
structed the probability distribution for the total number
photonsN of the twin-beam state with unity~Fig. 2! as well
as less-than-unity~Fig. 3! quantum efficiencies. Notice the
dramatic increase of error bars versusN and for smallerh.
Finally, in Fig. 4 we report the results of the tomograph
measurement of the matrix elementsCn,m defined in Eq.
~27!. Because the reconstructedCn,m is close to the theoreti-
cally expected value in Eq.~28!, these reveal the purity of
the twin-beam state, which cannot be inferred from the th
mal diagonal distribution of Fig. 1.

IV. AN APPLICATION TO THE GHZ STATE

Multimode homodyne tomography allows one to veri
the generation of multimode states that are of interest
studies of the foundations of quantum mechanics. An
ample is the Greenberger-Horne-Zeilinger~GHZ! state@17#,

FIG. 3. Similar to Fig. 2, but for quantum efficiencyh50.9 and
107 data samples~on the left! andh50.8 and 23107 data samples
~on the right!. Notice the dramatic increase of error bars~in gray
shade! versusN and for smallerh.

um

in

FIG. 2. Probability distribution for the total number of photon
of the twin-beam state in Eq.~24! for an average number of photon

per beamn̄52 obtained using the estimator in Eq.~19!. The oscil-
lation of the total photon-number probability due to the perfe
correlation of the twin-beam state has been reconstructed by s
lating 106 data samples with quantum efficiencyh51. The theo-
retical probability~thick solid line! is superimposed onto the resu
of the Monte Carlo experiment; the latter is shown by the thin so
line with the statistical errors in gray shade.
6-5
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which is a six-mode state given by

uGHZ&[
1

A2
~ u1ao1bo1co&2u1ae1be1ce&), ~29!

wherein o,e denote a couple of orthogonal polarization
a,b,c pertain to electromagnetic modes with different wa
vectors and/or frequencies; and the notationu1,1,1& repre-
sents the tensor product of three single-photon Fock sta
The GHZ state is very interesting as it leads to correlati
between three particles that are in contradiction with
Einstein-Podolsky-Rosen idea of ‘‘elements of reality’’@18#.
We note here that no experiment has yet succeeded in
izing the GHZ state.

A tomographic measurement of the state in Eq.~29! can
be suitably performed by varying randomly the phases
polarizations of the pairs of modesao,e , bo,e , andco,e , and
then collecting homodyne outcomes by using three differ
LO’s. The need of using three separate LO’s in the pres
case is that in the actual experimental arrangement@19# the
three beams corresponding to modesao,e , bo,e , and co,e
come with different wave vectors and thus are spatially se
rated. Hence, such an experimental arrangement here g
the opportunity to use a combination of the present mu
mode method and the usual many-LO method based on
product of single-mode estimators.

A simple tomographic check of the GHZ-state producti
consists of measuring the expectation value on the proje
uf&^fu, where

uf&[
1

A2
~ u1ao1bo1co&1eifu1ae1be1ce&), ~30!

and comparing the result with the theoretical value, nam

C~f![ z^fuGHZ& z25
1

2
~12 cosf!. ~31!

Notice that forf5p, the functionC(f) represents the fi-
delity of the GHZ-state production. In addition, the same

FIG. 4. Tomographic reconstruction of the matrix eleme
Cn,m[ a^mu b^muC&^Cun&aun&b of the twin-beam state of parame
ric fluorescence in Eq.~24! for an average number of photons p

beamn̄52, obtained using the estimator in Eq.~13!. On the left we
used 106 simulated data samples and quantum efficiencyh50.9; on
the right 33106 data samples andh50.8. The coherence of th
twin-beam state is easily recognized asCn,m varies little forn1m
5const@j in Eq. ~24! has been chosen real#. For a typical compari-
son between theoretical and experimental matrix elements and
relative statistical errors, see experiments in Figs. 2 and 3.
01380
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of homodyne data allows one to recover the whole interf
ence profile in Eq.~31! for all values off.

In Fig. 5 we report the results of a Monte Carlo simulati
of the tomographic measurement ofC(f) in Eq. ~31!. We
used 53107 homodyne data samples and assumed a qu
tum efficiencyh585%. For these parameters, the simula
C(f) compares very well with the theoretical one.

V. CONCLUSIONS

We have presented a generalization of the quantum
modyne tomography method to many modes of the radia
field that requires the use of only a single LO. By varyin
suitable random parameters, the LO scans over all the lin
combinations of the field modes. We have also provide
general method to obtain the ‘‘unbiased estimator’’ for
generic multimode operator. The quantum expectation va
of such an operator can be evaluated for any unknown s
of the radiation field by averaging the estimator over t
homodyne outcomes that are collected by using a single
The estimators for some observables, such as the matri
ements of the multimode density operator and the total nu
ber of photons, have been explicitly evaluated. For the tw
mode case, we derived the estimator for the four-dimensio
Q function and the moments-generating function of the to
number of photons. By means of Monte Carlo simulatio
we have analyzed in detail the case of the twin-beam st
namely the two-mode state produced by nondegenerate p
metric amplification ~spontaneous down-conversion!. For
quantum efficiency of homodyne detection in the 80–90
range and with number of data samples of order 106–107, the
simulations show that measurements of the joint phot
number probability, the distribution of the total number
photons, and the density-matrix elements are experimen
feasible.

We have also shown an application of the method of m

s

eir

FIG. 5. Tomographic measurement of the overlapC(f) be-
tween the GHZ state in Eq.~29! and the stateuf& in Eq. ~30! with
varying phasef. The value forf5p represents the fidelity be
tween the experimental state and the theoretical one. Here a M
Carlo simulation withN52.53107 data samples and quantum e
ficiency h50.85. The bars represent the statistical error, wher
the solid line is the theoretical value ofC(f). All points are ob-
tained from the same data samples~which causes the evident cor
relation between the statistical deviations!.
6-6
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timode homodyne tomography to the measurement of
radiation field prepared in the Greenberger-Horne-Zeilin
state. The results of our simulations suggest that with a n
ber of homodyne data samples around 107 and a homodyne
detection efficiency of 85%, the method would allow t
reconstruction of such an interesting state of the radia
field with relatively small statistical errors.
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APPENDIX

In this appendix we derive the theoretical probability d
tribution ph(x;u,c0 ,c1) of the twin-beam state,

uC&5S~x!u0&au0&b5~12uju2!1/2(
n50

`

jnun&aun&b ,

~A1!

where S(x)5 exp(xa†b†2x*ab) and j5eiargx tanhuxu. For
unity quantum efficiency, the probability densi
p(x;u,c0 ,c1) is defined as follows:

p~x;u,c0 ,c1!

5Tr@U†ux&a a^xu ^ 1bUuC&^Cu#

5a^0u b^0uS†~x!U†ux& a a^xu ^ 1bUS~x!u0&au0&b ,

~A2!

where ux&a is the eigenvector of the quadraturex5 1
2 (a†

1a) with eigenvaluex andU is the unitary operator achiev
ing the mode transformation

U†S a
bDU5S e2 ic0 cosu e2 ic1 sinu

2eic1 sinu eic0 cosu D S a
bD . ~A3!

In the case of two radiation modes having the same
quency but orthogonal polarizations—the case of type
phase-matched parametric amplifier—Eq.~25! gives the the-
oretical probability of outcomex for the homodyne measure
ment at a polarization angleu with respect to the polarization
of the a mode, and withc0 and c1 denoting the relative
phases between the LO and the two modes, respectively
using the Dirac-d representation of theX-quadrature projec-
tor

ux&^xu5E
2`

1` dl

2p
exp@ il~X2x!#, ~A4!

Eq. ~A2! can be rewritten as follows:
01380
e
r
-

n

.
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-
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II

By

p~x;u,c0 ,c1!

5E
2`

1` dl

2p a^0u b^0uS†~x!U†eil(Xa2x)US~x!u0&au0&b

5E
2`

1` dl

2p
e2 ilx

a^0u b^0u

3expH i
l

2
@~e2 ic0m cosu1eic1n* sinu!a

1~eic0n* cosu1e2 ic1m sinu!b1H.c.#J u0&au0&b ,

~A5!

where we have used Eq.~A3! and the transformation

S†~x!S a
b†DS~x!5S m n

n* m D S a
b†D ~A6!

with m5coshuxu andn5eiargx sinhuxu. Upon defining

KC5e2 ic0m cosu1eic1n* sinu,

KD5eic0n* cosu1e2 ic1m sinu, ~A7!

whereKPR andC,DPC, with uCu21uDu251, one has

K25m21unu212munusin 2u cos~c01c12argn!.
~A8!

Now, since the unitary transformation

S C D

D* C* D S a
bD→S a

bD ~A9!

has no effect on the vacuum state, Eq.~A5! leads to the
following Gaussian distribution:

p~x;u,c0 ,c1!5E
2`

1` dl

2p
e2 ilx

a^0u b^0uexpH iK
l

2
@~Ca

1Db!1H.c.#J u0&au0&b

5E
2`

1` dl

2p
e2 ilx

a^0uexpH iK
l

2
@a1a†#J u0&a

5
1

K
za^0ux/K&az25

1

A2pD2~u,c0 ,c1!

3expS 2
x2

2D2~u,c0 ,c1!
D , ~A10!

where the varianceD2(u,c0 ,c1) is given by
6-7
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D2~u,c0 ,c1!5
K2

4

5
11uju212ujusin 2u cos~c01c12argj!

4~12uju2!
.

~A11!
s
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d
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01380
Taking into account the Gaussian convolution that res
from less-than-unity quantum efficiency, the variance j
increases asD2(u,c0 ,c1)→Dh

2(u,c0 ,c1)5D2(u,c0 ,c1)
1(12h)/4h. Notice that the probability distribution in Eq
~A10! corresponds to a squeezed vacuum foru5p/4 and
c01c12argj50 or p.
v.
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