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Universal homodyne tomography with a single local oscillator
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We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field
using homodyne detection with a single local oscillator. In this method the local oscillator scans over all
possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of
the measurement is studied on the basis of Monte Carlo simulations. We also provide an application of this
method in tomographic testing of the Greenberger-Horne-Zeilinger state.

PACS numbd(s): 42.50.Dv, 03.65-w

I. INTRODUCTION of the operator can then be obtained for any unknown state
of the radiation field through an average of this estimator
Optical homodyne tomography is a well-established quanever the homodyne outcomes that are collected using a
titative method for measuring the quantum state of radiatiorsingle LO which scans over different linear combinations of
and for obtaining the expectation value of arbitrary observihe incident modes. The paper is organized as follows. In
ables of the field1-3] (for a review, see Ref[4]). The Sec. Il we present the general method for obtaining the esti-
success of optical homodyne tomography has stimulated rénator pertaining to an arbitrary multimode operator. Upon
search relating to the state-reconstruction procedures in oth@veraging this estimator over the homodyne outcomes, one
fields, such as in the realm of atoni&], molecular[6], and  obtains the quantum expectation value of the corresponding
ion-trap [7] physics. As a matter of fact, the tomographic operator. We specialize to observables corresponding to the
method is a kind of universal detection technid@® with matrix elements of the multimode density operator and to the
which one can measure any observaBleof the field by total number of photons. In the two-mode case we explicitly
averaging a suitable unbiased estimafo®](x, ¢) over the  derive the estimator for the four-dimensiorgafunction and
homodyne data at random phase values. Single-mode for the moments-generating function of the total number of
homodyne tomography can bhe immediate|y genera”zed t@hOtOﬂS. In Sec. lll we investigate the experimental condi-
multimode fields. For factorized multimode operatdps tions for extracting the joint photon-number probability and
=0,80,®---®0, the corresponding estimator is just the the distribution of the total number of photons for two-mode

product of the estimators for each of the single-mode opersduantum states. We present the results of some Monte Carlo
torsO;,0;, ... ,0,. By linearity the estimator can then be simulations for the twm—beam 's.tate. that is produced by non-
extended to generic multimode operators. However, such gegenerate parametric amplificatioispontaneous down-
simple generalization requires a separate homodyne mesgonversion. We average the estimators obtained in Sec. Il
surement for each of the modes, which cannot be achieved fver the homodyne data that are distributed according to the
practice when the modes of the field are not Spatio_theore-tlcal h.OmOdyne probablllty evaluated in the App.endlx.
temporally separated. For this reason, tomographic methodsh€ simulations show that the measurement is feasible for
have been devised which either use only a single local osciduantum efficiency values of the homodyne detector in the
lator (LO) [9] or avoid the use of conventional homodyne 80—90% range and with the number of experimental data
detection[10]. However, both the methods work for only Samples of order £8-10'. In Sec. IV we show an application
two modes of the field, and the self-homodyne method oPf our method in measurement of the three-particle maxi-
Ref.[10] is suitable only in special experimental situationsMally entangled state called the Greenberger-Horne-
(e.g., in the tomography of parametrically down_convertedZeilinge_r(G_HZ) state. In such a case the number of radiation
radiation. Therefore, a more general multimode tomogra-Modes is six and a more suitable arrangement of the tomog-
phic method is needed, especially in consideration of théaphic machine requires the use of three LO’s. The results of
poss|b|||ty of a precise ana'ysis for pu'sed fie|dsy for which Monte Carlo simulations show that for homOdyne detectors
the problem of mode matching between the LO and the deWith quantum efficiency valug=_85%, one needs about 10
tected fields(determined by their relative spatio-temporal data samples to reconstruct the state with a relatively small
overlap [11] gives a detrimental contribution to the overall Statistical error. Finally, some conclusions are drawn in
quantum efficiency. Sec. V.
In this paper we propose a general method for measuring
an arbitrary observable of the multimode electromagnetic
field, which uses homodyne detection wittsiagle LO. We
provide the rule for evaluating the “unbiased estimator” ofa  For a single-mode radiation field one has the following
generic multimode operator. The quantum expectation valueesolution of the identity on the Hilbert-Schmidt space:

Il. THE GENERAL METHOD
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@)

d?z
f 7Tr[OD’f(z)]D(z), (1)

where O is a Hilbert-Schmidt operator, the integral is ex-
tended to the complex plané for z, and D(z)= exp@a'
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o= [[autin [ aurin [ 5]y

—Z7*a) denotes the displacement operator for the field modéiere we have used the notation

with annihilation and creation operatoesand a', respec-
tively, having the commutation relatijm,a’]=1. Equation
(1) simply follows from the orthogonality relation for dis-
placement operators [ID(z)D'(z')]= 6,(z—2'), ,(2) de-

noting the Dirac delta function on the complex plane. Equa-
tion (1) is the starting point of our method; it can be easily

generalized to any number of modes as follows:

d’zy [ d?z d’z
o [Fr[dn [T
a v a
M
X Tr Oexr{Z (—zal+za) ’
=0
M
xex;{lzo (zal—z'a)|, 2
whereag, andafr, with [=0, ... M and[a ,alT,]=5|,, , are

X Tr{O exd —ikX(8, ) [yexdikX(6,4)]. (4
- o [2mdy,
[ dutir=I1 52
N M w2
fd/.b[ﬂ]izMMlllj[l . dg, sir™M-N*1p cosg,
5
I ..
X(0,9)=S[AT(0,4) + A0, )], ©)
M
A(G, ) =2, e (D). (7

Notice that, thanks to the parametrization in E8), where
E,*:“oulz(é):l, one has the commutation relation

the annihilation and creation operators, respectively, of th?A(é #),AT(6,9)]=1, which implies thatA(d,4) and

M+ 1 independent modes, ar@ now denotes an operator
over all the modes. Using the following hyperspherical pa
rametrization forz e C:

i . i
zo=§ku0( f)e' Vo= Eke‘ Yo cosé,,

Zl:2

S i
ku,(6)e'V1= Eke“”1 sin @, cosé,,

i . i
2= 5 Kug( 6)e' Vo= Eke‘ ¥25in 6, sin 6, cosé;,
()
i .
Zy-1=5 Kuy 1 (0)e" -1

2kei‘/’Mflsin 6, sinf,- - - sinfy,_,cosby,

[ .
zMzzkuM(a)e'wM

[
Eke“”M Sin@,sinb,- - - sinfy_,1SiN6y,

where ke[0®); ¢ €[0,27] for 1=0,1,... M; and 6,
e[0,m/2] for1=1,2,... M, Eq.(2) can be rewritten as fol-
lows:

A'(6, ) themselves are annihilation and creation operators,

respectively, of a bosonic mode. Also, by scanning all values
of 6,e[0,7/2] and ¢, €[ 0,27], all possible linear combina-
tions of the modes described by annihilation operaggrs
with [=0, ... M, are obtained.

For a single mode of the radiation field, the experimental
homodyne probability distribution of a field quadrature with
quantum efficiencyn<<1l is a Gaussian convolution with
varianceAf,=(1— n)/4n of the ideal probability distribu-
tion. Therefore, for the quadrature opera(é,) in Eq.
(6), one has the following identity for the moments-
generating function:

ikX\ _ =7, (" dkx 57
(%)= ex 87 k2] | dxe“p,(x;0.4),  (8)
where pﬂ(x;é,J/) denotes the homodyne probability distri-

bution of the quadratur¥ (6, ) with quantum efficiencyy.
Generally,n» can depend on the mode itself, i.e., it is a func-

tion 7= 7(6, ) of the selected mode. In the following, for
simplicity, we assumey to be mode independent, however.
By taking the ensemble average on each side of(Bgand
using Eq.(8), one has

(©)= [ auld [ durd) | axp,0xi6. 08,1010,
©

where, for a given operat®, the functions,[ O](x; 6, #) of
X, 6, J; has the following analytic expression:
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s kML e R hood method 14,15, which do not suffer such limitation on
EL010%0,9) =~ dte™ 2 the quantum efficiency; however, they are generally biased
o0 and based on assumptions for the state of the radiation field.
) : 2 7. Equation(9) can be specialized to some observaliesf
X Tr{O: —2i+/ktX :} (10
0:ex I\/K— (6.4)):} (10 interest. In particular, one can estimate the matrix element
where {n}IR|{m;}) of the multimode density operat® This will
be obtained by averaging the following estimator:
27
= -1 D g [HmBAn10x 6, )
and :: denotes normal ordering. Equatid®) is the central T M+1 M
result of this paper. For any given opera@it provides the =e Zi=oM=m)¥
“ : . " M!I =o
unbiased estimator” to be averaged over all homodyne out-
comes of the quadraturé(é,) in order to obtain the en- . ) !
semble averagéO) for any unknown state of the radiation XA [=ikuy(6)] " ol
field. The homodyne outcomes f( 6, zZ) can be obtained
by using a single LO that is prepared in the multimode co- % J'Hcdte*”z‘ \WxtMﬂlM:o(#vw)/Z
herent statex|” | y;) with y,=€e'"1u,(6)K/2 andK>1. In o
fact, in this case the rescaled zero-frequency photocurrent at y
the output of a balanced homodyne detector is given by v 2 2
<[ Lo [euf(o)t], (13
I=0

M
i= *a+val)/K, 12
|=ch (viatxap) (12 wherew,=max(m,,n;), »=min(m;,n;), andL(z) denotes

. the customary generalized Laguerre polynomial of variable
which corresponds to the operad(d, ). In the limit of a  z For diagonal matrix elements, E(L3) simplifies to
strong LO K— =), all moments of the currentcorrespond

to the moments oK(6,4), and the exact measurement of &,[[{n}){({n;}|1(x; 6,%)

X(6,) is then realized. Notice that for modaes with dif-

ferent frequencies, in the dc photocurrent in EtR) each kMHL e T M 5 =

LO with amplitudey, selects the mode, at the same fre- =M f dte™" "=t |=Ho Lolrui(o)t] (14
guency(and polarizatioh For the effect of less-than-unity
guantum efficiency, previous considerations on EBj.ap-
ply.

In order to obtain the ensemble average in B&j.as an
experimental average over the homodyne outcomes, o
needs to satisfy the validity conditions of the central-limit
theorem. Since in the strong LO approximation the probabil
ity pn(x;é,zZ) must decay as a Gaussian for largdt fol- agtagt---+ay+M
lows that the integral in Eq(9) can be experimentally n
sampled for anya priori unknown probability distribution . . .
p,(x;0,4) if £,[01(x;6,¥) increases slower than expf) = +Z+i . Li (o)L (X)L ¥(Xm),
for largex, and is bounded fox| < +. In this case one is o M
guaranteed that the integral in E() can be statistically (15
sampled over a sufficiently large set of data. The average . ] )
values for different experiments will be Gaussian distributedom Ed. (14) one can easily derive the estimator for the
around the mathematical expectation in E®), allowing es-  Probability distribution of the total number of photomé
timation of the confidence intervals, which will decrease as= sMoafay,
the inverse square root of the number of experimental data.

0

with L,(z) denoting the customary Laguerre polynomiakin
Notice that the estimator in Eg14) does not depend on the
hasesy, ; only the knowledge of the angle4 is needed.
sing the following identity for the Laguerre polynomials
[16]:

(X0+ Xi+--- +XM)

N M+1 %

In general, the boundedness &f O1(x; 6,4) for [x| <+ EInnlx .4 _k F dte—t+ 2R M| Mr ¢
will pose lower bounds for the quantum efficiengybelow A IMXnH06 6, 9) M! Jo nLxtl,
which the measurement cannot be performed, similarly to (16

what happens in the one-mode c&4&]. This limitation is

due to the generality of the method, which is perfectly unbi-where|n) denotes the eigenvector &f with eigenvaluen.
ased, and makes re priori assumption on the state of the Notice that the estimator in E¢L6) does not depend on any
radiation field, the only approximation being that of a strongof the phaseg, or the angle®),, and thus their knowledge is
LO. This should be contrasted with other methods, such asot needed in the measurement of the probability distribution
the maximum entropy methdd.3] or the maximum likeli-  of the total number of photons.
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Now we specialize to the case of only two modes., tors can be understood simply from the fact that to extract

M=1 and @ is a scalarg). The joint photon-number prob- information pertaining to a single mode, only one needs a
ability distribution is obtained by averaging the following function até=0 for modea, or 6= m/2 for modeb, and, in

estimator: this case, one could better use the original one-mode tomog-
raphy method12] by setting the LO to the proper mode of
67;[|nvm><n’m|](X; 0,1//0,1,/11) interest.
4o o Finally, we note that for the case of two-mode tomogra-
= Kzf dte™ 2Kt (kt coF O)Ly( kt Sir? ). phy, the estimato€, can be averaged by taking the integral
0
17 N dz,bofbr d(,//lfl d(cos 29)
Analogously, using Eq(10) one can derive the following (0)= o 2m)o 2m)_4 2
estimator for the four-dimension&) function:
+ 00
E e, BY(a, BI1(X; 0,40,11) XJ_ dxp,(X; 0,0, 1) E,LO1(X; 6,0, 1)
1 1 :
= qu)( 25— K| x— 5 cosf Im( a* e'%o) (23

5 over the random parameters co®(2¢,, and . For ex-
), (18) ample, in the case of two radiation modes having the same
frequency but orthogonal polarization&,represents a ran-
t dom rotation of the polarizations, whereag and s, denote
_the relative phases between the LO and the two modes, re-
spectively.

1 .
- Esmalm(ﬁ*e"h)

where |a,B8) with «,BeC denotes a two-mode coheren
state, and®(a,b;z) is the customary confluent hypergeo
metric function ofz. The estimator16) for the probability

distribution of the total number of photons can be written as
I1l. NUMERICAL RESULTS FOR TWO MODES

—+ oo
ELIMn10X; 0, ¢h0,4p1) = KZJO dte” 2L I it ] In this section we present some Monte Carlo simulations
(19) in order to estimate the working experimental conditions for
performing the single-LO tomography on two-mode fields.
For the total number of photons, one can also derive th§ye focus our attention on the twin-beam state, usually gen-

estimator for the moment-generating function, using the generated by spontaneous parametric down-conversion, namely
erating function for the Laguerre polynomidis6]. One ob-

tains -
[0)=(1-1¢HM 2 £n)aln)s. (24
ELZ Y06 0,0, ) = T 12
7+ _) For the simulations we use the following homodyne prob-
K ability distribution that is derived in the Appendix:
1 1-z
X P 2,5;—?X2 , 1
24 = P, (X;0,¢0,¢1) = =
K N2mAL(0,40,41)
(20 ,
where we have denoted layandb the annihilation operators Xexp( - X—> , (25
of the two modes. For the first two moments one obtains the 2A§7(9,,/,O,¢,1)

simple expressions

2 where the variancéi( 0,¢q,41) is given by

gfata+b™ol(x;0,90,1)=4x2+--2, (21
K 1+ &%+ 2| €| sin 26 cod o+ v, — argé)

41— ¢

A2(0, 0, ,) =
& [(ata+b'b)2](x; 6,40, 1) 2 0,%0,¢1)

1_
+=_ T
4n

=8x*+ %—20 X2+ EZ— 1—0+4. (22) (26)

Y Y Y

It is worth noting that analogous estimators for the photondn the case of two radiation modes having the same fre-
number difference between the two modes are singular anguency but orthogonal polarizations, E&5) gives the the-

one needs a cutoff procedure, similar to the one used in Reéretical probability of outcoma for the homodyne measure-
[10] for recovering the correlation between the modes byment at a polarization anglé, i, and #; denoting the
means of the customary two-mode tomography. The singulaklative phases between the LO and the two modes, respec-

behavior of the estimators for the photon-difference operatively.
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FIG. 1. Two-mode photon-number probabilip(n,m) of the
twin-beam state of parametric fluorescence in @4) for an aver- o Hi SRnRENEA
age number of photons per bears |£|%/(1—|£|%) =5 obtained by | LB | -
a Monte Carlo simulation of the probability in Eg®5) and (26) 0 5 10 15
with random parameters co8,2/,, and {1, using the estimator in N

Eq. (17). On the left we have quantum efficienay=1, and 16
data samples were used in the reconstruction. On the right, quantum |G, 2. Probability distribution for the total number of photons

efficiency #=0.9, and 5¢<10° data samples were used. The theo- o the twin-beam state in E¢24) for an average number of photons
retical values of off-diagonap(n,m) are zero; for a comparison o eann= o optained using the estimator in E49). The oscil-
between theoretical and experimental diaggw(ai,n) probabilities lation of the total photon-number probability due to the perfect

and their relative statistical errors, see analogous experiments I0rrelation of the twin-beam state has been reconstructed by simu-

Figs. 2 and 3. lating 16 data samples with quantum efficiengy=1. The theo-
retical probability(thick solid ling is superimposed onto the result

We study the tomographic measurement of the jointy the Monte Carlo experiment; the latter is shown by the thin solid
photon-number probability distribution and the probability jine with the statistical errors in gray shade.

distribution for the total number of photons with use of the
estimators in Eq917) and(19), respectively. Moreover, we By using the estimator in E¢(19), we have also con-

reconstruct the matrix elements structed the probability distribution for the total number of
photonsN of the twin-beam state with unit{Fig. 2) as well
Cn.m= a{m| (M| W )(¥[n),|n)y (270 as less-than-unityFig. 3 quantum efficiencies. Notice the

dramatic increase of error bars verddsnd for smallers.
that reveal the coherence of the twin-beam state by using theinally, in Fig. 4 we report the results of the tomographic
estimator in Eq.(13). For the twin-beam state in E¢24), measurement of the matrix elemer@s ., defined in Eq.
one should have (27). Because the reconstruct€q , is close to the theoreti-
cally expected value in Eq28), these reveal the purity of
Chom=(1—|&?gmern. (28)  the twin-beam state, which cannot be inferred from the ther-
mal diagonal distribution of Fig. 1.

The estimators have been numerically evaluated by applying
the Gauss method for calculating the integral in ELR), IV. AN APPLICATION TO THE GHZ STATE

which results in a fast and sulfficiently precise algorithm with Mulimode h d h all .
use of just 150 evaluation points. Notice that in the presenth ultimode homodyne tomography allows one to verlfy_
the generation of multimode states that are of interest in

case there is no convenience in using the factorization for= =~ : . .
mula given in Ref[9], as in that case an integral of a product studles_ of the foundations of quantum mechanics. An ex-
of functions is needed. ample is the Greenberger-Horne-Zeiling&Hz) state[17],

In Fig. 1, a Monte Carlo simulation of the joint photon-
number probability distribution is presented. The simulatec « [
values compare very well with the theoretical ones. We hawvi
done a careful analysis of the statistical errors for various |
twin-beam states by constructing histograms of deviations c__ ©

the results from different simulated experiments from the‘i/~ 1 ok p
theoretical ones. In comparison to the customary two-LC s [ Ht [ ]
luldgr c

0.3
p(N)
0.2

0
0.1

tomography{ 10], where fornp=1 the statistical errors satu-
rate for increasingly larga andm, here we have statistical
errors that are slowly increasing versuandm. This is due
to the fact that the range of the estimator in Ef7) in-
creases versus and m. Overall we find that for any given
quantum efficiency, the statistical errors are generally FiG. 3. Similar to Fig. 2, but for quantum efficieney=0.9 and
slightly larger than those obtained with the two-LO method.10’ data samplegon the lefy and =0.8 and 2 10’ data samples
The convenience of using a single LO then comes with itSon the righj. Notice the dramatic increase of error béirs gray
own price tag. shadg versusN and for smallery.

T e [ T

0

5 0 R 4 6

ol 4+

N N
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FIG. 4. Tomographic reconstruction of the matrix elements
Chm= a{Mm| (M| ¥)(¥|n),|n), of the twin-beam state of paramet-
ric fluorescence in Eq24) for an average number of photons per
beamn=2, obtained using the estimator in EG3). On the left we
used 16 simulated data samples and quantum efficieney0.9; on
the right 3<10° data samples ang=0.8. The coherence of the
twin-beam state is easily recognized@g, varies little forn+m
=const[ ¢ in Eq. (24) has been chosen réaFor a typical compari-
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FIG. 5. Tomographic measurement of the overlafp) be-
tween the GHZ state in E¢29) and the staté¢) in Eq. (30) with
varying phases. The value for¢= = represents the fidelity be-
tween the experimental state and the theoretical one. Here a Monte

: ) . 5
son between theoretical and experimental matrix elements and thefrlo simulation withN=2.5x10" data samples and quantum ef-

relative statistical errors, see experiments in Figs. 2 and 3.

which is a six-mode state given by
1
V2

wherein 0,e denote a couple of orthogonal polarizations;
a,b,c pertain to electromagnetic modes with different wave
vectors and/or frequencies; and the notatjari,1) repre-

|GHZ)= —(|1a,1by1c,) —|1aclbelce)), (29

sents the tensor product of three single-photon Fock state

The GHZ state is very interesting as it leads to correlation

Einstein-Podolsky-Rosen idea of “elements of realifyl8].

We note here that no experiment has yet succeeded in real-

izing the GHZ state.
A tomographic measurement of the state in E29) can

ficiency »=0.85. The bars represent the statistical error, whereas
the solid line is the theoretical value @f(¢). All points are ob-
tained from the same data sampleghich causes the evident cor-
relation between the statistical deviatipns

of homodyne data allows one to recover the whole interfer-
ence profile in Eq(31) for all values of¢.

In Fig. 5 we report the results of a Monte Carlo simulation
of the tomographic measurement ©f ¢) in Eq. (31). We
used 5< 10’ homodyne data samples and assumed a quan-
tim efficiencyn=85%. For these parameters, the simulated

between three particles that are in contradiction with the% (¢) compares very well with the theoretical one.

V. CONCLUSIONS

We have presented a generalization of the quantum ho-
modyne tomography method to many modes of the radiation

be suitably performed by varying randomly the phases an@g|q that requires the use of only a single LO. By varying

polarizations of the pairs of modes ., b, ¢, andc, ., and

suitable random parameters, the LO scans over all the linear

then collecting homodyne outcomes by using three differengompinations of the field modes. We have also provided a
LO's. The need of using three separate LO’s in the presenjaneral method to obtain the “unbiased estimator” for a

case is that in the actual experimental arranger&9itthe
three beams corresponding to mod®s,, by, andc,,

generic multimode operator. The quantum expectation value
of such an operator can be evaluated for any unknown state

come with different wave vectors and thus are spatially sepast the radiation field by averaging the estimator over the

rated. Hence, such an experimental arrangement here givRgmodyne outcomes that are collected by using a single LO.
the opportunity to use a combination of the present multi-The estimators for some observables, such as the matrix el-
mode method and the usual many-LO method based on th&nents of the multimode density operator and the total num-
product of single-mode estimators. _ ber of photons, have been explicitly evaluated. For the two-
A simple tomographic check of the GHZ-state productionmqde case, we derived the estimator for the four-dimensional
consists of measuring the expectation value on the projectq fynction and the moments-generating function of the total

|#)(¢l, where number of photons. By means of Monte Carlo simulations,
1 _ we have analyzed in detail the case of the twin-beam state,
|p)y= quaolbolco)+e'¢|1aelbelce>), (300  namely the two-mode state produced by nondegenerate para-

metric amplification (spontaneous down-conversjonFor
and comparing the result with the theoretical value, namelyguantum efficiency of homodyne detection in the 80—90 %
range and with number of data samples of ordé~10, the
simulations show that measurements of the joint photon-
number probability, the distribution of the total number of
photons, and the density-matrix elements are experimentally
Notice that for¢=r, the functionC(¢) represents the fi- feasible.

delity of the GHZ-state production. In addition, the same set We have also shown an application of the method of mul-

1
C(¢)=K$|GHZ)P=5 (1~ cose). (31
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timode homodyne tomography to the measurement of the(x; e,y ,y;)

radiation field prepared in the Greenberger-Horne-Zeilinger

state. The results of our simulations suggest that with a num- +o g\ ,

ber of homodyne data samples around 48d a homodyne =f 5 (0] p(0|ST()UTeMXa™0US( )| 0),]0)y
detection efficiency of 85%, the method would allow the —elm
reconstruction of such an interesting state of the radiation JHO

aN
field with relatively small statistical errors. = —e "™ (0] (0]

—o 2
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APPENDIX where we have used E¢A3) and the transformation
In this appendix we derive the theoretical probability dis- a moov\ig
tribution p, (X; 0, 1,41) of the twin-beam state, ST(X)(bT>S(X)= Vo (bT) (AB)
|W)=S(x)[0)a|0)p=(1— |§|2)1/2n§0 E"n)alnYp, with u=cosHy| and v=¢'3% sinH x|. Upon defining
(A1) KC=e Yoy cosf+ e "1* sing,

where S(x) = exp(@'b’—y*ab) and £é=e'@% tanHy|. For
unity quantum efficiency, the probability density
p(Xx; 6,q,¢,) is defined as follows:

KD=g'%op* cosf+e 14 siné, (A7)

whereK e R andC,D e C, with |C|2+|D|?=1, one has

P(X; 0,90, 1) K2=pu2+|v|?+2u|v|sin 26 cod o+ v, — argy).
=T U"[X)aa(X|® LU[W)(¥]] (A8)
= (0] p(0|ST(UTIX) 4 a(X| ® 1,US(x)|0)4| 0}y, Now, since the unitary transformation
(A2) C Dla (a
D* C* |lp/—lp (A9)
where |x), is the eigenvector of the quadrature=3(a'

+a) with eigenvaluex andU is the unitary operator achiev-
ing the mode transformation has no effect on the vacuum state, E45) leads to the

following Gaussian distribution:

a

b

e Wocosh e ising
ufl, Ju=

. . +oo 0N N
—elising e"”OCosa)<b)- (A3) p(Xiea!/fo-lﬁl):J —e‘”‘xa(0|b(0|exp[iK§[(Ca

- 21T

In the case of two radiation modes having the same fre-
quency but orthogonal polarizations—the case of type-ll
phase-matched parametric amplifier—E2p) gives the the-
oretical probability of outcome for the homodyne measure- +o O\ A

f p{iKE[awLaT]}m)a

+Db)+H.c.]]|0>a|o>b

ment at a polarization angkewith respect to the polarization =
of the a mode, and withiyy and ¢, denoting the relative

- ;e‘”‘xa<0|ex

phases between the LO and the two modes, respectively. By 1
using the Diracs representation of th&-quadrature projec- =— [O|X/K) ]>= =
tor K N2mwA%(0, 40, 1)
o= d\ x*
|X><X|=f S—exdiNX=X)], (A4) XeXP( I (A10)
—» 277' 2A2( 0! w01¢1)
Eq. (A2) can be rewritten as follows: where the varianca?(6, s, ;) is given by

013806-7
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K2 Taking into account the Gaussian convolution that results
A2(0.¢o,w1)=7 from less-than-unity quantum efficiency, the variance just
. increases aSAZ(avlﬂO!l//l)_}Az(evlpOi¢1)2A2(07‘r//01¢1)
:1+|§|2+2|§|S'” 260 cos Yot oy — argk) +(1—- 5)/47. Notice that the p?obability distribution in Eq.

4(1-1¢?) ' (A10) corresponds to a squeezed vacuum @t /4 and

(A11) Yot py—argg=0 or .
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