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a b s t r a c t

In this paper we study the emergence of Minkowski space–time from a discrete causal network
representing a classical information flow. Differently from previous approaches, we require the network
to be topologically homogeneous, so that the metric is derived from pure event-counting. Emergence
from events has an operational motivation in requiring that every physical quantity—including space–
time—be defined through precise measurement procedures. Topological homogeneity is a requirement
for having space–time metric emergent from the pure topology of causal connections, whereas physically
homogeneity corresponds to the universality of the physical law. We analyze in detail the case of 1+1
dimensions. If we consider the causal connections as an exchange of classical information, we can
establish coordinate systems via an Einsteinian protocol, and this leads to a digital version of the Lorentz
transformations. In a computational analogy, the foliation construction can be regarded as the
synchronization with a global clock of the calls to independent subroutines (corresponding to the
causally independent events) in a parallel distributed computation. Thus the Lorentz time-dilation
emerges as an increased density of leaves within a single tic-tac of a clock, whereas space-contraction
results from the corresponding decrease of density of events per leaf. The operational procedure of
building up the coordinate system introduces an in-principle indistinguishability between neighboring
events, resulting in a network that is coarse-grained, the thickness of the event being a function of the
observer's clock. The illustrated simple classical construction can be extended to space dimension greater
than one, with the price of anisotropy of the maximal speed, due to the Weyl-tiling problem. This issue is
cured if the causal network is quantum, as e.g. in a quantum cellular automaton, and isotropy is
recovered by quantum coherence via superposition of causal paths. We thus argue that in a causal
network description of space–time, the quantum nature of the network is crucial.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Our everyday way of looking at space–time as a stage for
physical events conflicts with the requirement of defining all
physical quantities—including space and time—through precise
measurement protocols. This means that we should more properly
regard space–time as emerging from events, instead of pre-
existing them. The operational definition of space–time is defined
by the protocol that sets up the coordinate system. For example, in
the Einstein protocol light pulses are sent back and forth between
different locations: at the place where the signal has been

originated, from the arrival time of the reflected signal one infers
both the distance and the time of the remote event of signal-
reflection. The protocol shows how space–time is indeed a
coherent organization of inferences based on a causal structure
for events. The clock itself is just a sequence of events—a light
pulse bouncing between two mirrors. The closest are the mirrors,
the more precise is the clock, and the more refined is the
coordinate system.

The above reasoning shows that ultimately space and time are
defined through pure event-counting, precisely counting tic-tacs of
the observer's clock, and we are thus lead to regard space and time
as emergent from the topology of the causal network of events.
The events of the network do not need to be regarded as actual,
but can be just potential, and the fabric of space–time is precisely
the network of causal links between them.
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The idea of deriving space–time from purely causal structures is
not new. Raphael Sorkin started an independent research line in
quantum gravity based on this idea more than two decades ago
(Bombelli, Lee, Meyer, & Sorkin, 1987). This was motivated by the
potentialities of the approach residing in the natural discreteness
of the causal network, which also provides a history-space for a
path integral formulation (Henson, 2006; Markopoulou, 2002).
The possibility of recovering the main features of the space–time
manifold—topology, differentiable structure, and conformal
metric—has been shown, starting from discrete sets of points
endowed with a causal partial ordering (Surya, 2008). Along these
lines, in an operational context, Hardy (2007) has also formulated
a causaloid approach, which considers the possibility of a dyna-
mical treatment of the causal links.

In the causal-set approach of Sorkin events are randomly
scattered in order to avoid occurrence of their sparseness in the
boosted frames that would lead to violation of Lorentz invariance.
Clearly the randomness of Sorkin's events should not be regarded
in terms of their location on a background, otherwise we contra-
dict the same idea of space–time emergence. We then need to
consider randomness at the pure topological level, and this means
having random causal connections. However, regarding the causal
connections as an irreducible description of the physical law, a
random topology would then corresponds to having a random
physical law at the most microscopic level (the Planck scale), and
one may argue that a “random law” would contradict the same
notion of law. Instead, the randomness should result from the law
itself, e.g. in a quantum cellular automaton, where randomness
comes from the quantum nature of the network. The universality
of the physical law thus leads us to take the causal network as
topologically homogeneous. Topological homogeneity has then the
added bonus that metric simply emerges from the pure topology
by just counting events along the network.

With the above motivations, in this paper we analyze the
mechanism of emergence of space–time from the pure homoge-
neous topology in 1+1 dimensions. We present a digital version of
the Lorentz transformations, along with the corresponding digital-
analog conversion rule. Upon considering the causal connections
as exchanges of classical information, we can establish coordinate
systems via an Einsteinian protocol, leading to a digital version of
the Lorentz transformations. In a computational analogy first
noticed by Lamport (1978), the foliation construction can be
regarded as the synchronization protocol with a global clock of
the calls to independent subroutines (the causally independent
events) in a parallel distributed computation. The boosts are
determined by the relative lengths of the tic and tac of the clock,
and the Lorentz time-dilation corresponds to an increased number
of leaves within a clock tic-tac, whereas space-contraction results
from the corresponding decreased density of events per leaf, as
first noticed in D'Ariano (2010).

We will see that the operational procedure of building up the
coordinate system introduces an in-principle indistinguishability
between neighboring events, resulting in a network that is coarse-
grained, the thickness of the event being a function of the
observer's clock. The digital version of the Lorentz transformation
is an integer relation which differs from the usual analog trans-
formation by a multiplicative real constant corresponding exactly
to the event thickness. The composition rule for velocities is
independent on such constant, and is the same in both the analog
and the digital versions. Preliminary results of the present work
were already presented in D'Ariano and Tosini (2010).

It is obvious that the discreteness of the causal network will
lead to violation of Lorenz covariance (and the other space
symmetries) at the Planck scale level. However, one must have a
theory where covariance is restored in the large scale limit—the
Fermi scale—corresponding to counting huge numbers of events.

This limit will not be considered in the details in the present paper
whose focus is on the exact digital description of the space–time
emergent from the network. An example of dynamical model
based on a discrete causal network at the Planck scale with the
usual covariance restored in the particle physics regime is shown
in D'Ariano (2011) and Bisio, D'Ariano, and Tosini (2012). In these
works a one-dimensional quantum cellular automaton at the
Planck scale is considered which in the large scale limit, corre-
sponding to small momenta, recovers the usual Dirac equation.
The choice of a quantum cellular automaton is also crucial in the
emergence of space–time from a causal network in dimension
greater than one. Indeed the illustrated simple classical construc-
tion can be extended to higher dimensions, but at the price of
anisotropy of the maximal speed, due to the Weyl-tiling problem
(Weyl). This issue is cured if the causal network is quantum, as in a
quantum cellular automaton, and isotropy is recovered with
quantum coherence, corresponding to superposition of causal
paths. We will thus argue that in a causal network description of
space–time, the quantum nature of the network is crucial.

2. Setting up the digital coordinate system

The first problem to address is which specific lattice should be
adopted for the causal network. In our convention the causal
arrow is directed from the bottom to the top of the network. The
dimension of the emerging space–time corresponds to the graph-
dimension of the network, which is the dimension of the embed-
ding manifold such that all links can be taken as segments of
straight line with the same length. We will require the lattice to be
pure topology (namely with all events equivalent), corresponding
to a locally homogeneous space–time, and with no redundant
links. It is then easy to see that in 1+1 dimensions there are only
three possible lattices: the square, the triangular, and the honey-
comb one (Fig. 1). The honeycomb-lattice has two inequivalent
types of events (having one input and two output links and
viceversa), and the corresponding “undressed” topology—where
each couple of connected inequivalent events is merged into a
single event—reduces to the square lattice. The triangular-lattice,
on the other hand, has redundant causal links (the middle vertical
ones). We are thus left with the square-lattice.

We always assume the network links as oriented according to
the causal arrow. In the square-lattice network there are thus two
types of link: toward the right and toward the left—shortly r-link
and l-link. Two events are in the same position (for some boosted
reference frame) if they are connected by a path made with a
sequence of r-links followed by a sequence of l-links. When the
two sequences contain the same number of links the reference is
at rest.

A clock is a sequence of causally connected events periodically
oscillating between two positions. For an Einstein clock the
oscillation (tic-tac) is exactly the same couple of sequences of l-
and r-links identifying events in the same position. The precision
of the clock, namely the minimum amount of time that it can
measure, is the number of links of a complete tic-tac. The tic-tac is

Fig. 1. The three possible homogeneous topologies for causal networks in 1+1
dimensions.
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indivisible, namely the sole tic (or tac) is not a complete measured
time interval, since it involves two different positions.

In the following we will call light signals those sequences of
events that are connected only by r-links or by l-links, namely
making segments at 451with the horizontal in the network. Their
“speed” is equal to “one event-per-step”, and it is the maximum
speed allowed by the causality of the network, since connecting
events along a line making an angle smaller than 451 with the
horizontal would require following some causal connections in the
backward direction from the output to the input. In this way a
homogeneous causal network suffices to guarantee a bound for
the speed of information flow.

In the following we will take the clock tic-tac made with α r-
links followed by β l-links (see Fig. 2). Any clock allows the
introduction of a reference frame R which is just a foliation of
the network built up using the Einstein protocol. From the start of
the clock tic-tac a light signal is sent to an event in a different
position and then received back at the clock. The intermediate
time between the sending and the receiving event is taken as
synchronous with the event at the turning point, and the number
of tic-tacs divided by two is taken as the distance from the turning
point and the clock conventionally located at the beginning of the
tic-tac. In this way we build the foliation corresponding to a given
clock. A set of synchronous events identifies a leaf of the foliation.

In Fig. 3 the Einstein protocol is illustrated in two particular
reference frames. The figure on the left corresponds to the rest-
frame, with the blue lines depicting the coordinate system
established using the clock with α¼ β¼ 1 (see Fig. 2). The green
lines represent light signals bouncing between the clock and four
particular events in the network. These events are synchronous,
since the intermediate time between the sending and the receiv-
ing event on the clock is the same for all of them. They lie on the
same leaf of the foliation, but at different position, 0; 1; 4; 7,
respectively: the spatial coordinate is obtained by counting the tic-
tacs between the sending and the receiving event divided by two.
The right figure represents a boosted frame for α¼ 3; β¼ 1, built
up using the same protocol as in the left figure.

Due to indivisibility of the tic-tac, we see that there are
indiscernible events, for which the synchronization occurs in the
middle of the tic-tac. We are thus led to identify events, and merge
them into thicker coarse-grained events. This is done as follows.
We identify the events along the tic and those along the tac so that
the tic-tac is always regarded as the bouncing between two next:
neighbour events. Then we merge events into minimal sets so that
the topology is left invariant (see Figs. 4 and 5). We can distinguish
between two different kinds of coarse-graining: one due to the
boosting (in yellow in the figures), and one due to intrinsic
imprecision of the clock (in gray). The difference between the
two is clarified in Fig. 5. In the top figure events along the tic and
events along the tac are identified in the boosted frame. Then
events are merged into minimal sets (in yellow) so that the
topology is left invariant (the merged events are again events of
a square-lattice network). In the central figure the coarse graining
associated to the intrinsic imprecision is added in gray, and finally,
in the bottom figure the circuit is stretched so to have all
synchronous events on horizontal lines, and events located in
the same position on vertical lines. Notice that in the special case
of the rest-frame, see Fig. 4, the coarse-graining is just due to the
intrinsic imprecision of the clock.

3. The digital Lorentz transformations

The velocity of the boosted frame can be easily written in terms
of the α and β of the tic-tac of the clock, by simply evaluating the
ratio of the distances in space and time between the two ending

Fig. 2. Different clocks on the causal network. The tic-tac of the clock is
represented by the two numbers α and β (see text). From the left to the right we
have the rest-frame clock, clock corresponding to α¼ β¼ 1, and boosted-frames for
α¼ 3; β¼ 1, α¼ 6; β¼ 2, and α¼ 7; β¼ 2, respectively, corresponding to digital
speed v¼ 1=2, v¼ 1=2, and v¼ 5=9, respectively. The case α¼ 6; β¼ 2 has doubled
imprecision, compared to the case α¼ 3; β¼ 1.

Fig. 3. Illustration of the Einstein protocol for establishing a reference frame. Left figure: rest-frame. The blue lines represent the reference frame established using the clock
with α¼ β¼ 1 (see Fig. 2). The green lines represent light signals bouncing between the clock and four particular events in the network. These events are synchronous, since
the intermediate time between the sending and the receiving event on the clock is the same for all of them. They lie on the same leaf of the foliation, but at different position,
0, 1, 4, 7, respectively: the spatial coordinate is obtained by counting the tic-tacs between the sending and the receiving event (0, 2, 8, 14, respectively) divided by two. Right
figure: boosted reference frame (blue lines) for α¼ 3; β¼ 1, built up using the same protocol as in the felt figure. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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points of the tic-tac, namely

v¼
α−β
αþ β

: ð1Þ

Thanks to invariance of topology under the boost coarse-graining, the
above identity holds also for the motion relative to any boosted frame,
whence, upon defining with α12 ¼ α2=α1∈Q (Q denoting rational
numbers) and β12 ¼ β2=β1∈Q for frames R1 and R2, and by v12∈Q
the relative velocity of frame R2 with respect to frame R1, one has

v12 ¼
α12−β12
α12 þ β12

: ð2Þ

Now, by using the trivial identities α13 ¼ α12α23 and β13 ¼ β12β23 one
has

v13 ¼
α12α23−β12β23
α12α23 þ β12β23

; ð3Þ

which by simple algebraic manipulations immediately gives

v13 ¼

α12−β12
α12 þ β12

! "
þ

α23−β23
α23 þ β23

! "

1þ
α12−β12
α12 þ β12

! "
α23−β23
α23 þ β23

! " ¼
v12 þ v23
1þ v12v23

: ð4Þ

The last identity is the composition rule of parallel velocities (the only
possibility in 1+1 dimension) in special relativity.

Now we use the Einstein protocol to construct the boosted
coordinated system with respect to the rest-frame along with the
relative coordinate systems between any couple of boosted frames.
We will now see that the coordinates of an event transform from
the frame R2 to the frame R1 as follows:

s1 ¼ 1
2 ðα12 þ β12Þs2 þ 1

2ðα12−β12Þt2; ð5Þ

t1 ¼ 1
2 ðα12 þ β12Þt2 þ 1

2ðα12−β12Þs2: ð6Þ

In fact, from a simple inspection of Fig. 6 one can check Eqs. (5) and (6)
with the frame R1 as the rest frame. In the left figure the reference
frameR1 with α1 ¼ β1 ¼ 1 is represented by the tiny network in black,
whereas the coarser network in blue represents the boosted reference
frameR2 with α2 ¼ 4, β2 ¼ 2. According to Eq. (2) the relative velocity
of R2 with respect to R1 is v12 ¼ 1=3. In order to connect the
coordinate systems in the two frames we have chosen the same
origin (0,0) on both R2 and R1. The generic event on R2∩R1 has
coordinates ðs2; t2Þ ¼ ð3;2Þ and ðs1; t1Þ ¼ ð11;9Þ in the two frames,
respectively. In the figure on the right one can see that a spatial step in
R2 corresponds to ðα12 þ β12Þ=2 space and ðα12−β12Þ=2 time steps in
R1. In the same way a time step in R2 corresponds to ðα12−β12Þ=2
space and ðα12 þ β12Þ=2 time steps in R1. This correspondence allows

the determination of the coordinates ðs1; t1Þ of a given event in the
frame R1 in terms of its coordinates ðs2; t2Þ in the frame R2. The
resulting transformations are in Eqs. (5) and (6). Invariance of topology
with boost, guarantees that they also hold between any couple of
boosted frames. By elementary manipulation Eqs. (5) and (6) can be
written in the more customary way

s1 ¼ 1
2ðα12 þ β12Þðs2 þ v12t2Þ; ð7Þ

t1 ¼ 1
2ðα12 þ β12Þðt2 þ v12s2Þ: ð8Þ

Upon defining the following constant depending on the clocks of the
two frames:

χ12≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α12β12

p
; ð9Þ

Fig. 4. Coarse-graining in the rest-frame. The coarse-graining due to boosts is
trivial (depicted in yellow, containing just one event), whereas the coarse-graining
associated to the intrinsic imprecision of the clock is not trivial (depicted in gray,
containing four events). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

Fig. 5. Illustration of the coarse-graining procedure due to boost (in yellow) and to
intrinsic imprecision of the clock (in gray). Top figure: events along the tic and
events along the tac are identified in the boosted frame. Then events are merged
into minimal sets (in yellow) so that the topology is left invariant (the merged
events are again events of a square-lattice network). Center figure: the coarse
graining associated to the intrinsic imprecision is added in gray. Bottom figure: the
circuit is stretched so to have all synchronous events on horizontal lines, and events
located in the same position on vertical lines. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
article.)
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and using the identity

1
2
ðα12 þ β12Þ ¼

χ12ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v212

q ; ð10Þ

we obtain the digital Lorentz transformations

s1 ¼ χ12
s2 þ v12t2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−v212
q ; t1 ¼ χ12

t2 þ v12s2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v212

q : ð11Þ

Eq. (11) differ from the usual analog Lorentz transformations by
the multiplicative factor χ12, which is logically required to make
the transformations rational, compensating the irrationality of the
boost factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v212

q
. The digital-analog conversion is thus just a

rescaling of both space and time coordinates by the factor ðαβÞ1=2

depending on the boost, which is exactly the square-root of the
volume of the coarse-grained event measured as the number of
rest-frame events that it contains. Such event volume also affects
the Lorentz space-contraction and time-dilation factor, which in
the digital case is given by 1

2 ðα12 þ β12Þ, whereas in the analog case
is rescaled by the ratio of event volumes, leading to
ð1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α12β12

p
Þðα12 þ β12Þ. Thus, for example, for α12 ¼ 1 and

β12 ¼ 3 corresponding to v12 ¼ 1=2 the digital factor is 2 whereas
the analog one is 2=

ffiffiffi
3

p
. The digital factor agrees with that of the

Lorentz time-dilation and space-contraction mechanism of
D'Ariano (2010), given in terms of increased density of leaves
and corresponding decreased density of events per leaf, as
illustrated in Fig. 7.

4. Conclusions and discussion

We have analyzed the mechanism of emergence of space–time
from homogeneous topology in 1+1 dimensions, deriving the
digital version of the Lorentz transformations along with the
corresponding digital-analog conversion rule. The homogeneity
of topology physically represents the universality of the physical
law (it is worth mentioning that such law is stripped of
the conventionality of space and time homogeneity: see e.g.
Malament, 1977). We have built the digital coordinate system
using the Einstein's protocol, with signals sent back-and-forth to

events from an observer's clock. We found that the procedure
introduces an in-principle indistinguishability between neigh-
bouring events, due to the limited precision of the clock, resulting
in a network that is coarse-grained, with the event thickness also
depending on the boost. The digital version of the Lorentz
transformation is an integer relation which differs from the usual
analog transformation by a multiplicative real constant corre-
sponding to the event thickness.

The present purely classical kinematical construction does not
straightforwardly extend from one dimension to larger dimen-
sions, due to the Weyl-tiling issue, namely that continuum
geometry cannot simply emerge from counting sites on a discrete
lattice, since e.g. in a square tiling one counts the same number of
tiles along a side and along the diagonal of a square (Weyl). Thus,
for example, as shown in Fig. 8, in a causal network shaped as a
square-lattice the fastest speed would be along the cubic axes,
whereas along diagonals information should zig-zag, resulting in a
slowdown by a factor

ffiffiffi
2

p
(or even

ffiffiffi
3

p
in three dimensions).

Indeed, a general theorem of Fritz (2011) shows that the polytope
of points that can be reached in no more than N links in a periodic
graph does not approach a circle for large N. Since the polytope has
necessarily distinguished directions, this means that there is no
periodic graph for which this velocity set is isotropic. This result
represents a no-go theorem for the emergence of an isotropic
space from a discrete homogeneous causal network representing a
classical information flow.

The situation, however, is completely different if one considers
the possibility that information can flow in a superposition of

!12

"12

1 2
(!

12
 - 

" 1
2)

1 2
(!

12
 +

 "
12

)
1
2

(!12 + "12)

1
2

(!12 - "12)

(s2, t2)

(0, 0)

Fig. 6. Illustration of the derivation of Eqs. (5) and (6), leading to the digital version
of the Lorentz transformations (7) and (8). Left figure: the reference frame R1 with
α1 ¼ β1 ¼ 1 is represented by the tiny network in black, whereas the coarser
network in blue represents the boosted reference frame R2 with α2 ¼ 4, β2 ¼ 2.
According to Eq. (2) the relative velocity of R2 with respect to R1 is v12 ¼ 1=3. In
order to connect the coordinate systems in the two frames we have chosen the
same origin ð0;0Þ on both R2 and R1. The generic event on R2 has coordinates
ðs2 ; t2Þ ¼ ð3;2Þ and ðs1 ; t1Þ ¼ ð11;9Þ in the two frames, respectively. Right figure: a
spatial step in R2 corresponds to ðα12 þ β12Þ=2 space and ðα12−β12Þ=2 time steps in
R1. In the same way a time step in R2 corresponds to ðα12−β12Þ=2 space and ðα12 þ
β12Þ=2 time steps in R1. This correspondence allows the determination of the
coordinates ðs1 ; t1Þ of a given event in the frame R1 in terms of its coordinates
ðs2 ; t2Þ in the frame R2. The resulting transformations are in Eqs. (5) and (6). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

Fig. 7. The mechanism for the digital Lorentz time-dilation and space-contraction
given in D'Ariano (2010), here for a boost with v¼ 1=2, corresponding to a digital
time-dilation by a factor 2 (analog factor 2=

ffiffiffi
3

p
) and space-contraction by a factor

1/2 (compare with the same factors in Eq. (11)).

Fig. 8. Square (2+1)-dimensional computational network: view of a leaf in the rest
frame. Information must zig-zag to flow at the maximal speed in diagonal
direction. This leads to a slow-down of a

ffiffiffi
2

p
factor of the analog speed compared

to cubic axis direction.
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paths, along the network, as in a quantum cellular automaton,
corresponding to a homogeneous quantum computational net-
work. In Fig. 9 a concrete example of evolution is given for a two-
dimensional quantum Weyl automaton of the kind of (Bialynicki-
Birula, 1994) on a square-lattice. One can see that the maximum
propagation speed is isotropic after just few steps. In a similar way
full Lorentz covariance is expected to be restored in the same limit
of infinitely many events–a kind of large-scale limit corresponding
to observing the automaton at the Fermi scale. Describing the

automaton in the momentum space the large-scale limit is
rigorously defined by considering small momenta (Bisio et al.,
2012), indeed mathematically a cut-off on the momenta is dually
related to a coarse graining in the position space.
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finding a particle or antiparticle in a two-dimensional quantum Weyl automaton of
the kind of Bialynicki-Birula (1994) on a square-lattice. One can see how the
propagation speed is isotropic after few steps.
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