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Abstract

A general method is presented for estimating the ensemble average of all operators of arbitrary quantum system from a
set of measurements of a quorum of observables. A procedure for deconvolving any kind of instrumental noise is
established. Physical implementations and measuring apparatuses are considered. Existing measuring procedures are derived
as examples of application of the present general method. New measuring procedures are obtained which apply to different
physical contexts. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Bz; 03.67.-a

1. Introduction

In the jargon of quantum mechanics an obserÕ-
able corresponds to a selfadjoint operator O acting
on the Hilbert space HH of the quantum system SS .
However, the problem of which operators correspond

w xto actual observables remains unsolved 1 . More-
over, in practical situations one often measures com-
plex quantities – e.g. the e.m. field – or physical
parameters – e.g. phase shifts – which do not have
selfadjoint counterpart. Quantum estimation theory
w x2 provides a general framework for such kind of
measurements, and complex-field measurements –
corresponding to jointly measuring the noncommut-

Ž .E-mail address: dariano@pv.infn.it G.M. D’Ariano .

ing position and momentum of a harmonic oscillator
w x3 – are routine heterodyne detection. In recent
years we have witnessed an increasing interest in the
possibility of measuring the density matrix of the

w xquantum state itself 4,5 , and from the first theoreti-
w xcal formulation 6 this chance has finally entered the

w xrealm of experiments 7,8 . Homodyne tomography
Ž w x1.see Ref. 9 is becoming standard in optical labs
w x12 : this method measures the matrix elements of
the e.m. field state by averaging special functions of
the field quadratures – the analogue of all linear
combinations of position and momentum of a har-
monic oscillator. The method has been extended to

1 The first exact technique to estimate number-state matrix
elements by averaging functions of homodyne data was presented

w x w xin Ref. 10 ; for a review see Ref. 11 .
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² :the estimation of the ensemble average A of any
w x2field operator A 13 .

The set of quadratures in homodyne tomography
w xis an example of quorum 6 of observables, namely

a ‘complete’ set of noncommuting observables for
determining the quantum state of the system. In this
letter the concept of quorum will be the basis of a
simple general method for estimating the ensemble
average of all operators of arbitrary quantum system.
As we will see in the following, the method provides
a concrete framework to design measuring appara-
tuses for estimation, taking into account also instru-
mental noise of any kind in the measurement. The
method will be presented at an intermediate level of
generality, in order to keep this letter simply read-
able: routes to generalizations will be given at the
end.

2. The estimation rule

� 4I will call the set QQs Q of observables Q ,l l

lgL , a quorum for SS if it is possible to estimate
² :the ensemble average A of any linear operator

Ž .AgLL HH by using only measurement outcomes of
quorum observables. An unbiased estimation rule EE

for the quorum QQ assigns to every operator A an
operator valued function of Q gQQ 3, the unbiasedl

Ž .estimator EE Q , such that the ensemble averageA l

² : w xA sTr AD for arbitrary unknown state D can be
obtained by averaging over the quorum as follows

² : ² :A s dm l EE Q , 1Ž . Ž . Ž .H A l
L

where m is a probability measure over L , and the
Žintegral is a sum for discrete set L the explicit

dependence of EE on l is omitted for simplicity ofA
.notation .

2 For infinite dimensional HH one cannot estimate the ensemble
² : w x `average A sTr AD 'Ý D A from the measuredn ms1 n m m n

matrix elements D of the density operator, because the statisti-n m

cal error for matrix elements D is typically non vanishing forn m
² :n,m™`, and the trace sum for A is affected by unbounded

statistical error if A is not vanishing sufficiently fast forn m

n,m™`. This point is well clarified in the case of homodyne
w xtomography in Ref. 14

3 Ž .EE Q is a function of Q in the sense that it shares the sameA l l

spectral decomposition of Q .l

Ž .Eq. 1 corresponds to the following estimation
² : .procedure for A : i select an observable Q ran-l

domly in the quorum QQ according to the probability
.measure m; ii measure Q and evaluate the functionl

.EE of the outcome; iii average the result over manyA

measurements with different Q gQQ, achieving thel

² :expectation A in the limit of infinitely many
² :measurements. Notice that the ensemble average A

Ž .of any operator AgLL HH is obtained from the
same set of data using the same fixed estimation
rule.

Ž .Eq. 1 must be true for arbitrary D , whence

As dm l EE Q , 2Ž . Ž . Ž .H A l
L

with integral converging for expected values as in
Ž .Eq. 1 . Notice that the estimation rule is generally

not unique, since there exist null estimators NN over
QQ satisfying the identity

dm l NN Q s0 . 3Ž . Ž . Ž .H l
L

The existence of null estimators sets an equivalence
Žrelation , between unbiased estimators two esti-

mators are equivalent if they differ by a null estima-
.tor .
We now derive a general estimation rule ab-

stractly: physical implementations and apparatuses
will be considered later. An unbiased estimation rule

Ž .is obtained from any Lie group T of transforma-
tions ggT with invariant measure d g and unitary

4 Ž .irreducible representation UIR R over the Hilbert
Žspace HH of the quantum system for simplicity we

.consider T unimodular and R square integrable .
The following selfadjoint involution EsE† 'Ey1

on HHmHH

Es d g R† g mR g , 4Ž . Ž . Ž .H
T

is an intertwining operator, namely, for any two
operators A and B one has the identity

E AmB s BmA E , 5Ž . Ž . Ž .
w xwhich is easily proved by the first Schur lemma 15 .

The invariant measure d g can be normalized as

4 For a simple and self-contained book on grouprepresentation
w xtheory for physicists, the reader is addressed to Ref. 15 .
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<² < Ž . < : < 2 < : < :H d g u R g Õ s1, u , Õ gHH any two unitT

vectors – the integral being independent on their
choice, due to irreducibility of the representation
w x15 . With such normalization the following identi-
ties hold

Tr E sTr E s| , 6Ž . Ž . Ž .1 2

where Tr denotes the partial trace over the ithi
Ž . Ž .Hilbert space of HHmHH. From Eqs. 5 and 6 one

has

w xAsTr Am| E . 7Ž .1

Ž .Consider the polar parametrization g c ;n s
Ž . � 4exp ic nPT of group elements, where T' T is ai

basis for the Lie algebra of T , and ngL is a unit
< < 2vector n s1 here playing the role of l. Using the

� 4new polar variables c ,n for T , the intertwining
operator rewrites as follows

Es dn E nPT , 8Ž . Ž .H
L

where

E nPT s dm c eyi c nPDT , 9Ž . Ž . Ž .H
Ž .DT'Tm|y|mT , the measure dm c includes

Ž . Ž .the Jacobian J c ,n in d gsJ c ,n dc dn, and the
integral is extended to the real axis or to a circle, for
T with continuous or discrete spectrum, respec-

5 Ž . Ž .tively . Eqs. 7 – 9 are equivalent to the following
unbiased estimation rule

EE nPT sTr Am| E nPT . 10Ž . Ž . Ž .A 1

Ž . Ž .For A traceclass, integral and trace in Eqs. 9 , 10
can be exchanged, obtaining

w yi c nPT x qi c nPTEE nPT s dm c Tr e A e . 11Ž . Ž . Ž .HA

But, how to realize the quorum of observables in
practice? In a concrete situation one doesn’t have an
infinite set of detectors at disposal for all possible
observables in QQ. However, one can start from a
finite maximal set of commuting observables, say

5 More generally, when the Lie algebra of G can be decom-
posed into the direct sum of sub-algebras, one can exploit a
separate polar parametrization for each sub-algebra, and the pa-
rameter c becomes a point on a cylinderrtorus.

� 4H , and achieve the quorum observables by evolv-n

ing H under the action of a group G of physicaln

Ž .transformations in the Heisenberg picture . This can
be attained, for example, by preceding the H -detec-n

tors with an apparatus that performs the transforma-
tions of G. For example, as shown in the following,
for estimating angular momentum observables a quo-
rum is given by the set of all angular momentum
operators JPn on the sphere ngS2. The detector is
simply a Stern–Gerlach apparatus for J precededz

by a uniform magnetic field in the xy plane. The
magnetic field in the xy plane rotates J to JPn. Inz

other situations, the group G is simply achieved by
tuning some parameters at detectors, e.g. rotating the

Ž .phase of the local oscillator LO in the homodyne
w xdetector of a homodyne tomographer 11 . In this

scenario the quorum manifold L is isomorphic to
the coset space GrH, H denoting the stabilizer of
the seed obserÕables H under the action of G.n

Notice that, in the present construction, the physical
group G is generally different from the frame group
T.

3. Examples

Before continuing, let us illustrate the above pro-
cedure on the basis of some examples. In Table 1 the
estimation rule for some different apparatuses is
given. The first example is homodyne tomography
w x11 . The measuring apparatus is a homodyne detec-
tor with tunable phase with respect to the LO. The
quantum system is the harmonic oscillator represent-
ing a single mode of the e.m. field, with annihilation

w † xand creation operators a,a s1 acting on a infinite
dimensional HH. The frame group T is the Heisen-

Ž .berg–Weyl group of displacement operators D a

Ž † ) .sexp a a ya a . The quorum is the set of field
1 † if yifquadratures X ( a e qae with uniformlyŽ .f 2

w x Ž .distributed phase fg 0,p , dm f sdfrp . The
Ž .physical group G is the group U 1 of rotations of

the phase f. The stabilizer H is generated by the
p-rotation, which is equivalent to the quadrature
inversion X syX .fqp f

The second example in Table 1 represents the
estimation of angular momentum observables for a

Ž .spin-J elementary particle, or any 2 Jq1 -level sys-
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Table 1
Examples of applications of the universal quantum estimation procedure. Here T denotes the frame group, G the physical group, L the

Ž Ž .quorum manifold, Q 'nPT the quorum observables both l and n denote a point in L , depending on convenience see text . Thel

Ž . Ž . Ž . Ž . Ž . Ž . Ž .estimation rule E Q is introduced in Eqs. 1 and 9 – 10 . The measure dm l , is defined in Eqs. 1 and 8 . WH denotes the Weyll

Heisenberg group of displacement operators in the complex plane. D denotes the dihedral group with a two-fold axis. All other notation is2

standard.
mŽnq1.T WH WH

Ž . Ž .G U 1 SU nq1
w x Ž .L 0,p SU nq1

Ž .Q 'nPT X X u ,cl f
d f d cŽ . nq1dm l duŽ .p 2p

nq 11 1 d k k` `Ž . Ž . Ž Ž ..E Q H dk kcos kDX H cos kDX u ,cnl 0 f 02 2 2 n!

Measuring apparatus f-tunable homodyne Mode-and-f-tunable homodyne

Ž .T SU 2 D2

Ž .G SO 3 D2
2L S Z3

Q 'nPT JPn sl a
d n 1Ž .dm l 4p 3
2 J q 1 c 3 1p 2Ž . Ž .E Q H dc sin cos cDJPn s ms ql 0 a ap 2 2 2

Measuring apparatus Two-field Stern–Gerlach Two-field Stern–Gerlach

Ž .tem. The frame group is TsSU 2 , whereas the
physical group is the group of rotations of the angu-

Ž .lar momentum GsSO 3 . The quorum is the set of
all angular momentum operators JPn on the Bloch

2 Ž . Ž .sphere S ,SU 2 rU 1 uniformly distributed with
Ž . Ž .dm n sdnr 4p . The apparatus is the two-field

Stern–Gerlach machine already mentioned.
The third example is a particular case of the

1previous one for Js . Here the discrete minimal2

� 4quorum QQs s ,s ,s of Pauli matrices is avail-x y z

able. TsG'D the dihedral group of p-rotations2

around three perpendicular axes. Notice that this
minimal quorum is not complete for estimation with

1 6
J) .2

The last example in Table 1 is the case of multi-
w xmode homodyne tomography with one LO 17 . The

apparatus is a homodyne detector with phase and
mode-tunable LO. The quantum system is a multi-

6 Although quorum minimality maybe dictated by elegance and
simplicity requirements, it is not clear if it is of any practical use.
For example, achieving the complete rotation group physically is
not more difficult than achieving only a discrete subgroup. More-
over, computer simulations show that statistical errors in the

westimation procedure are unaffected by the size of the quorum L.
xMaccone, PhD thesis . For a reconstruction method of the spin

w xdensity matrix based on a minimal quorum, see Ref. 16

mode e.m. field, with annihilation operators
a ,a , . . . , a . The quorum is the set of quadratures0 1 n

1 †Ž . Ž .X u ,c s A u ,c qA u ,c where A u ,cŽ . Ž .2
n yic l Ž .sÝ e u u a are bosonic mode operators,ls0 l l

with ugSnq1 a point on a Poincare hyper-sphere,´
� w x4 � w x4cs c g 0,2p , us u g 0,pr2 , with proba-l l

dcn lŽ .bility measure dm u ,c sŁ du. The anni-ls0 2p

Ž .hilation operators A u ,c of the quorum are the
orbit of a fixed single mode, say a , under the action0

Ž .of G'SU nq1 . As a relevant example of applica-
tion, here the estimator of the matrix element
²� 4 < <� 4:n R m of the full joint density operator R ofl l

modes for generally nonunit quantum efficiency h

w x17

EE Žh . x ;u ,cŽ .<�m 4: ²�n 4 <l l

n nq1kŽ .yi n ym cl l lÝse
ls0 n!

=
n n !m ynl l l'yi k u uŽ .Ł l (½ 5m !ls0 l

=

n
` 1 Ž .'ytq2 i k t x nq m ynl l2 Ýd t e tH

ls00

=
n

m yn 2l lL k u u t . 12Ž . Ž .Ł n ll
ls0
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Ž . Ž . Ž .In Eq. 12 m smax m ,n , n smin m ,n , ksl l l l l l
Ž . l Ž .2hr 2hy1 , and L x denote generalized La-n

guerre polynomials. Other examples can be found in
w xRef. 17 .

For composite systems with Hilbert space HHs
mN HH a quorum is the Cartesian-product quorumns1 n

QQs=N QQ , with the tensor-product estimationns1 n

rule for factorized operators mN A : EE N -ns1 n m Ans 1 n

Ž . N Ž .Q , . . . ,Q sŁ EE Q – the rule being ex-1 N ns1 A nn

Ž .tended to all operators in LL HH by linearity. Notice
that the tensor product rule is sufficient to estimate

Ž . Žany global obserÕable in LL HH for example, the
.full joint density matrix , but a local measurement

on each subsystem is needed, i.e. subsystems must
Žbe distinguishable an example is the selfhomodyne

w x.technique in Ref. 18 . In contrast, for indistinguish-
able systems one needs a quorum of global observ-

1ables. For example, for two spin- particles two2

perpendicular gradients allow to separate multiplet
w xcomponents 19 . Another example of global quorum

observables is the one-LO multimode homodyne to-
mography mentioned above.

4. Deconvolution of instrumental noise

In the practical situation the estimation needs to
be achieved in the presence of instrumental noise. In
quantum mechanics instrumental noise of any kind
can be described by a unit-preserving completely

Ž . Ž . Ž . Žpositive CP map G : LL HH ™LL HH in fact,
CP-maps are used to describe any quantum open

w x.system: see Ref. 20 . The noise G can be decon-
Ž .ÕolÕed for the estimation of A if EE QQ is in theA

y1 y1w Ž .xdomain of G and G EE Q is still a functionA l

Ž .of Q See footnote 3 . In this case the ensemblel

average of A can be estimated in the presence of
wnoise G using the deconÕolÕed estimator see Eq.

Ž .x y1w Ž .x � y1w Ž .x478 G EE n P T s Tr A m | G E n P T .A 1

An example of noise deconvolution is the case of
w xGaussian noise in homodyne detection 21 . Here, in

order to evaluate the deconvolved estimator for noise

7 Noise can be deconvolved more generally when there is a
new quorum QQ isomorphic to QQ with a map m : QQlQQ suchG G G

y1 w Ž .xthat G EE Q shares the same spectral decomposition ofA l

Ž .m Q for all Q g QQ.G l l

variance D 2 , one only needs the identity
1 2 2w Ž .x Ž .G exp ikX sexp ikX y k D in order to getf f 4

the deconvolved estimation rule

` 2 21y1 1 4D kG E X s dk k e cos kDX .Ž . Ž .Hf f2
0

13Ž .

Nonunit quantum efficiency corresponds to Gaussian
2 Ž . Ž .noise with D s 1yh r 2h . Notice that, gener-

ally, there is a A-dependent bound for D2, above
w xwhich the deconvolution fails 21 . In the example of

Ž . Žh .Eq. 12 the estimator EE is already a deconvolved
1estimator, and the bound is h) . Another example2

1 Ž .is the Js estimation in a Pauli-channel G A sp2
pŽ . w x1yp Aq Tr A , 0FpF1, with deconvolved2

3Ž p.Ž . �Žestimation rule for p - 1: EE s s 1 yA a 2
1y1. w x w x4p Tr As s q Tr A .a a 2

Ž .In Eq. 11 the estimation rule was specialized to
traceclass operators. For non-traceclass operators one

Ž .can evaluate the integral in Eq. 9 as a distribution
and use a kind of renormalization technique that
exploits the equivalence relation , between estima-
tors, dropping the unbounded null-estimator part. For
example, for homodyne tomography, all null estima-
tors are linear combinations of X ke" iŽ2 pq2qk .,0,f

for k, pG0. One can deduce a function calculus
based on the equivalence , , and evaluate all the
estimators of the unbounded s-ordered field mono-

� †m n4mials a a for quantum efficiency h in terms ofs
Ž‘truncated’ Hermite polynomials for a short account

w xof the renormalization procedure see 22 ; a detailed
derivation will be published elsewhere. For normal
ordering the truncated-Hermite estimators are equiv-

w x.alent to the complete Hermite given in 23 . For
example, the estimator of the photon number is

Žh .Ž . 2 Ž . Žh .
†simply EE X s2 X y1r 2h , EE denotinga a f f

deconvolved estimators for quantum efficiency h.
The same technique can be used for the case of
one-LO multimode homodyne tomography. For ex-
ample, for the total photon number of two modes one

Žh . Ž Ž .. Ž .2
† †has EE X u ,c s4 X u ,c y1rh.a aqb b

5. Estimation strategies

The group theoretical quorum here derived can
also be used with other estimation strategies different
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from the present averaging procedure. Thanks to the
existence of null estimators, there are many equiva-
lent unbiased estimators, and adaptiÕe least-squares

w xmethods are possible 24 , with the estimator
‘adapted’ to the set of measured data, by minimizing
the r.m.s. error in the equivalence class. Also, actiÕe
adaptiÕe approaches can be exploited as well, where

Ž .the measure probability dm l over the quorum is
upgraded from the uniform one, while accumulating
data. Another relevant strategy, the max-likelihood
method, can be used for measuring unknown param-
eters of a unitary transformation on a given state, or
for measuring the matrix elements of the density

w xoperator itself 25 . For the full joint density matrix
R the likelihood function is LL s Ý log-i
� <² < † < : < 24 Ž † .Ý n TW q yb Tr T T , where b is a La-lk n k i i

< :grange multiplier, n any basis for HH, the sum runs
over the label of the ith measurement, T is an upper
triangular matrix in the Cholesky decomposition R
sT †T of the density matrix R, W , with Ý W †Wk k k k

w xs |, give the Kraus decomposition G A s
† < :Ý W AW of the noise G , and finally q denoteslk k k

an eigenvector of the quorum observable Q withl

eigenvalue q. Notice that, since this method needs a
finite parametrization of the density matrix, trunca-
tion of the Hilbert space dimension is unavoidable,
and the estimation becomes biased. However, smaller
statistical errors are obtained, as compared to the

w xaveraging procedure of this letter 25 .

6. Further developments

Square integrable representations R have been
considered for simplicity up to now. For non square
integrable representations the method of imprimitiv-

w xity systems can be used 26 . This allows, for exam-
ple, to consider the case of the full Poincare group,`
corresponding to the general quantum estimation for

Ža relativistic particle the measuring apparatus be-
coming a Mossbauer variant of the Stern–Gerlach˝
apparatus previously considered, where, in addition
to the angular momentum, the energy of the particle

.is measured in a moving frame . Imprimitivity sys-
tems allow also include estimation methods of the

w xkind of the photon number tomography of Ref. 27 .
Generalization to non unimodular groups is also

Ž .possible. Here the partial traces in Eq. 6 give no

Ž .longer the identity, whereas Eq. 5 holds for either
As| or Bs|, depending if d g is right or left

Ž .invariant, respectively. When the operators Tr En
Ž .can be inverted, Eq. 7 – the core of the present

method – can be easily generalized.
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