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Phase-covariant quantum cloning
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We consider alN— M quantum cloning transformation acting on pure two-level states lying on the equator
of the Bloch sphere. An upper bound for its fidelity is presented, by establishing a connection between optimal
phase-covariant cloning and phase estimation. We give the explicit form of a cloning transformation that
achieves the bound for the cade=1, M=2, and find a link between this case and optimal eavesdropping in
the quantum cryptographic scheme BB84.

PACS numbegs): 03.67.Dd, 03.65-w

I. INTRODUCTION The paper is organized as follows. In Sec. Il we describe
the general operation of a phase-covariant cloning transfor-
Perfect quantum cloning of a set of input states that conmation. In Sec. Ill we establish the connection between

tains at least two nonorthogonal states is impossjlie ~ phase-covariant cloning and phase estimation, and prove an
However, it is interesting to study how well we can approxi- upper bound on the fidelity of ahl—M phase-covariant
mate a perfect cloning procedure. We can expect differentloner acting on equatorial qubits. In Sec. IV we derive the
results depending on the set of input states considered. lexplicit form of the 1—2 cloning transformation for equato-
particular, we expect that the smaller the set of inputs, i.e.ial qubits that saturates the bound, and point out a connec-
the more information about the input is given, the better ondion to eavesdropping in quantum cryptography.

can clone each of its states.

We analyze the case of pure qubits, i.e., vectors of a two4|. PHASE-COVARIANT CLONING TRANSFORMATIONS
dimensional Hilbert spacé(=(2. Optimal N—M cloning ) _ i ) . )
transformationgi.e., transformations which act dv identi- In this section we consider cloning transformations with
cal inputs and creath! outputs for the largest set of input the requirement that the fidelity is the same for any equato-
qubits, namely, for qubits belonging to the whole Hilbert rial qubit, i.e., it does not depend on t_he value of the phase
space, have been recently propo§e4]. Since a crucial ¢- We call such cloners “phase-covariant clonefgico).
requirement for such transformations is that their efficiency We describe the action of aN—M phase-covariant
is the same for all input states, they were called universafloner on theN input qubits by means of a completely posi-
Cloning transformations' tive (CP) map TNM [5] We will consider Only pure Input

In this paper we will analyze cloning transformations thatstates of the fornhy)( ¢4 |“", namely, product states made

are optimal for a restricted set of input states, namely, pur€f N identical copies. The output of the map is generally a
states of the form mixed statep,, of the M output qubits. In order to guarantee

that all the output copies are described by the same density
operator we require thaty, is supported on the symmetric
|¢,¢>: i[| 0>+ei¢| 1)], (1) subspace of the total Hilbert space of thleoutput qubits
J2 (the symmetric subspace is defined as the space spanned by
all pure states which are invariant under any permutation of

where ¢ €[0,2m) and{| 0),| 1)} represent a basis for a qu- the constituent qubijs Th_e _density operator describing the
bit. We call the qubits of this form “equatorial” because the Staté of each output qubit is given by

z component of their Bloch vector is zero, i.e., the Bloch out_ ®N

vector is restricted to the intersection of tke/ plane with P =R Tl ) (|1, 2

the Bloch sphere. The parametgris the angle between the \yhere R denotes the partial trace over all but one output

Bloch vector and thex axis. qubits. The phase-covariance condition corresponds to im-

Studying the restriction of the input set to the equator isposing the following requirement on the operation of the
motivated by physical implementations of quantum commu-|oning map:

nication ideas(all existing quantum cryptographic experi-

ments are using states that are on the equator, rather than U, 00T =R Tam(U SN g (wr [2NUTEM)] 3
states that span the whole Bloch spheas well as by fun-

damental questions in quantum information processing. Afor any pure staté ¢y and all unitary phase-shift operators
we will show in this paper, restricting to equatorial statesU,= exd —i/2(o,—1)x], where xe[0,27) and o, is the
makes the cloning problem related to phase estimation. ThiBauli operator diad,—1}.

connection can be exploited in order to derive bounds for the We define the quality of the cloning transformation in
optimal cloning fidelity. As expected, restriction of the clon- terms of the fidelity between the reduced density operator of
ing symmetry improves the cloning performance. each output copy and the input statg,)
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F=(y|p°" ). (4)  ditions for the output of th&l— M cloner acting orN pure

In the Appendix we show that without loss of generality anqubltS I»n the generic pure stae/) with (unit-lengtt) Bloch
phase-covariant cloning transformation can be completel)\/eCtorS'

described in terms of two shrinking factorg,(N,M) and

17,(N,M). The former describes the shrinking of the compo- 2 BiSxi= Mxy(N,M)s,,

nent of the Bloch vector lying in the-y plane of the Bloch !

sphere, the latter the shrinking of the component alongzthe

direction, namely, the state of each output copy is Z BiSyi=my(N,M)s, , (9)

1
pOUtZEUH_ ﬂxy(N,M)(SxUX-i- Sya'y) + 7,(N,M)s,0,],
(5) > Bisu= mNM)s;,

wheres; are the components of the Bloch vector of the initial
state| ) of each of theN input copies. Therefore, for equa-
torial qubits, the cloner leads to an isotropic shrinking,
namely, the density operator of each output c@yis given

wheres,; denotes thex component of the Bloch vector of
state| ;){#; |, and accordingly foy,z.

The reduced density operator describing each oflthe
copies at the output of the second cloner is given by

by
1 R[Tui(pm) 1= RITwc () i) |#M)
P (N U |+ STL= mNADTL, (§)  RLTulow) 1= 2 AR () )]
1
wherel is the identity operator. Thus, for equatorial qubits = B =[I+ Nxy(M, L) (Sxiox+Syi0y)
the action of a phase-covariant cloner is completely specified i 2

in terms of the equatorial shrinking factg,(N,M) and the
fidelity is F poc(N,M)=[1+ 7, (N,M)]/2. +nZ(M,L)sinZ]J. (10
IIl. OPTIMAL CLONING OF EQUATORIAL QUBITS By using Egs.(9) the above expression takes the form

In this section we derive an upper bound for the shrinking 1
factor 7,,(N,M) of a phase-covariant cloner for equatorial  R[ Ty, (Tyw(| ¢)<w|®N))]=§[Jl+ Mxy(N,M) 7,,(M,, L)
gubits. Our derivation is similar to the one of universal clon-
ers[3]. It is based on the concatenation property of phase-
covariant cloners and on the link to phase estimation, as
shown in the following. + 7,(N,M) 5,(M,L)s,0,],

1D

X(syoxtsyoy)

A. Concatenation of phase-covariant cloners
We concatenate two phase-covariant cloners as followgd!amely the concatenation property holds. For input qubits
The first is anN—M cloner acting orN equatorial qubits, from the equator th_e B_Ioch vector of_each copy at the output
the second one acts on the output siajeof the M output of the two cloners is simply shrunk in they plane by the
qubits of the first cloner and givésoutput copies. We show  [2CtOr 7x,(N,M) 77,(M, L).
in the following that the sequence of these two cloning trans-

formations is a phase covariant cloner with a shrinking factor B. Phase-covariant cloning and phase estimation
7xy for the x-y plane that is the multiplication of the shrink-  \we will now prove the following connection between
ing factors,, of the two separate cloners, namely, phase-covariant cloners and phase estimation of equatorial
ubits:
Tey(NoL) = (N, M) 7 (ML) @
. opt ) — 0pt
In order to prove the above property we exploit the decom- yy (N,20) = 7756 (N). (12)
osition of a density operator supported on the symmetri . . S .
P ¥ op PP y She quantity 792 (N,M) is the shrinking factor in the-y
subspacég4], Xy 3 . .
plane of the optimaN—M phase-covariant cloner, while
-3 oM 8 nggt(N) is the shrinking factor of the reconstructed reduced
M= < Bil gid(wni |77, ®) density operator after performing phase estimatjm on N
equatorial qubits.
with B;e R (not necessarily positiyeand>; 8;=1. The aim of phase estimation is to find the optimal strategy

Using the shrinking character of the phase covariant clonto estimate the value of the phagd6]. This is described in
ing transformation described in the previous section and theerms of a positive-operator valued measuiROVM),
linearity of the cloning map we can write the following con- namely,du(¢,), where ¢, is the estimated value of the
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phase,du(¢,)=0, and [(d¢, /27)du(¢,)=1. The out- — o
come of each instance of measurement provides, with prob- Fpe(N):zi (Wl BIAL )i D )
ability p(¢|é,)=Trldu(d,)|¥s){¥yl], the “candidate”

|44, ) for |4,). The fidelity of phase estimation can be cal- _ —
cuibated from¢the outcomes of the measurement as _Zi <¢¢|B‘[ mse (L) i) (¥
_ de, ) — 1 —ont
FodNI= [ 5200016l )=l ol ). 431 7Ll a7
(13

— _ where the optimal shrinking factor for state estimation is
where ¢ = [(d, /2m)p( | b)) (i, | IS the recon-  given by 70PY(|)=[2F°P(L)—1]=L/(L+2) [8]. Taking
structed density operator. For covariant phase estimation th@e |imit of Eq.(17) for L—% we have

idelity does not depend o#, thus for the optimal procedure
04 can also be written as

— 00

_ L 1
. FodN) = 2 (4l Bil i)t 1) =5 Lmy(N.2) + 1],
2= peN) [ ) (gl + 5[1=mpeN)IL - (14) (18

The concatenation of a phase-covariant cloner with a state

namely, the input state is shrunk by the factgpe(N)  ggtimation cannot perform better than the optimal phase es-

=2F,e(N)—1. timation, thus we can write
The fidelity for optimal covariant phase estimation of
equatorial qubits, derived in Rdf7], takes the form nggt(N oo)$;ggt(N). (19)
N-1
— 1 1 N\/ N i i ;
Opt Ny — The inequalitieg16) and(19) prove the equality12).
FoeN)=5+ 505 ;0 | (|+1 . (19
i . C. Bound for optimal phase-covariant cloning
In order to prove Eq(12) we first notice that after perform- o
ing optimal phase estimation oX equatorial qubits all in We now prove an upper bound for the fidelity of &h

state| ¢,) we can prepare a state bfqubits, supported on — M phase-covariant cloning transformation acting on equa-
the symmetric subspace, where each qubit is described H@rial qubits. We consider a phase-covariant clohgs that

the reduced density operatét4). This procedure can be results from concatenating the two phase-covariant cloners
viewed as a phase covariant cloner and therefore it canndinm @nd Ty... In this way we cannot obtain aN—o
perform better than the optim&l—L phase covariant clon- cloner that works better than the optimal one. Thus, by using

ing transformation. Thus we can write the inequality the concatenation property of phase-covariant cloners proven
above we can write

Opt = Opt
Toe (W)= (NLL). (1o Dy (NM) (M) < 728 (N). (20
which holds for any value of, and in particular folL— oo,

We will now prove the opposite inequalityvhich holds ~ In the sequence of the two cloners we takelthe- as the
for L—o only): we concatenate a phase-covaridhtL optimal one in order to find the tightest upper bound for the
cloner, acting on equatorial qubits, with a subsequent optiequatorial shrinking factor of a phase covaritkt-M clon-
mal state estimation(se procedure(note that state estima- ing transformation. We rewrite E420) as follows:

tion on qubits includes also an estimate of their phathe

whole procedure can be seen aglaase estimation per- opt 7y (N,o)
formed on the input ;)| N, with fidelity Txy (N’M)g—nopt(M - (21
Xy ’
Foe(N)= (4| AL(pD)| ), By exploiting the connection to phase estimation in &),
proven above, this bound takes the form
Aclp) =2 TP, —p
" _ 7 N
. . ng)‘ft(N,M)$17pcc(N,M)=_§:t—
wherep, is the output of the cloner and, (p,) is the CP Mpe (M)
map of the state estimation afqubits,{P,} represents the N-1
set of optimal POVM's for state estimation bfqubits[8,7] Ny N
and| ¢,,) denotes the candidate fpg) when performing the =) I\ 1+1
measuremenP ,. Sincep_ is supported on the symmetric =2M-N ot (22
subspace, we use again the decompositign (M ) ( ] M )
=38 ¢iX ;i | and obtain <o j/\it1
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1 . . . . . . Then we will show that this transformation leads to the same
fidelity for any input from the equator. Therefore we have

' . also found the best transformation that takes all states from
0o L Phase e eaani donng s | the equator as inputlf we could find a better one on the
whole equator it would have to be better than the optimal one
085 | x - for the BB84 states.
We start from a general symmetric ansatz for the unitary
w08} x T transformation on the input qubit, blank qubit, and ancilla,
x ] written in this order:

0.95

0.75 | o

° o U] 0)] 0)[ X)=a| 00)| A)+b(| 01)+| 10))| B) +¢| 11)| C),

07 |

065 | . U| 1)| 0)| X)=7a| 11)| A)+b(| 10)+| 01))| B)+c| 00)| (~C2>é)

0.6 1 1 1 1 1 1

k 2 8 ot 6 4 8 For convenience we include all phases in E2f) into the

o . __ancilla states, so that the coefficiemt®,c,a,b, andc are
FIG. 1. Upper bound for the fidelity in phase-covariant cloning real and positive. Furthermore, the transformation should not
compared with the optimal fidelity for universal cloning of qubits. P ’ ’

Both sets of points are shown for a fixed number of inpNts,1, as change under renaming tfle basls, €., ethandé)))fand
a function ofM, the number of outputs. For the limi — one | 1)—therefore we hava=a, b=b, andc=c.
finds from the formulas given in the text thBp.(1,) =3/4 and The normalization and unitarity conditions for E@6)
Fon (1) =2/3. read

- o a?+2b2+c?=1
In Fig. 1 we show the upper bound for the fidelity of phase- '
covariant cloning and the optimal fidelity for a universal ~ e ~ (27)
cloner. The two quantities are shown as a functiorviofor ac(C|A)+2b%(B[B)+ac(A[C)=0.

fixed N=1. By varying N it is possible to see that Now we have to determine the free parameters in this

transformation(coefficients and scalar products of ancillas
such that the fidelityr = {4 |p°“Y| ¢), where| ) is one of

the four BB84 states, is constant and optimal. Het¥' is

as expected. Note that while in the case of universal clonin . ; : .
the explicit form of the CP map which achieves the bound isghe reduced density matrix of the first or second bit at the

known([2], in the case of phase-covariant cloners acting OnOUtI?LiJ; 2tfrgi]geh?flgrr\]/$;rd to calculate the fidelities correspond-
equatorial qubits we do not know whether the bouda) ing to the reduced output density matrices for the four BB84

can be achieved for general valuestoandM. In the next states. From their equality we find the following constraints:
section we present the cloning transformation which ' q y 9 '

Dped N,M)> 708 (N,M) VN<M, (23)

univ

achieves the bound in the particular cd¢e 1, M=2. F=a2+b2 (29)
IV. OPTIMAL 1 —2 CLONING OF EQUATORIAL QUBITS F=1(1+abRq(A[B)+(B|A)]
In this section we present constructive proof for the best +beRe(B|C)+(T|B)]) (29)

1—2 cloning transformation acting on equatorial qubits. For

convenience we choose the equator in ke plane instead _ S =

of the x-y equator.(Note that optimality of the fidelity must 0=2abRe(A[B)+(B[A)]+bcRe(B|C)+(C|B)].

be independent from the choice of a particular basience

we consider equatorial states with real coefficients of theas the scalar products of ancillas are independent parameters

form the real part of which varies between -1 and, we can

) maximize the fidelity in Eq(29) to

| y)=a| 0)+ B 1) witha,B real, o+ B%=1. (24)
F=3%[1+2b(a+c)] (31

Our notation and method is inspired by Rf]. We proceed

as follows: first we derive the optimal cloner that takes onlyby an appropriate choice of ancillas. Similarly, we can al-

the four BB84 states as input. Here we use the acronyriways fulfill Eq. (30) by the right choice of ancillas. So, our

BB84 for the quantum cryptographic protocol described intask reduces to finding the maximum of the function

Ref.[10]. Remember that the four BB84 states are given by N _
F=3(1+a“—c9), (32

10y, [1), |0)= \/g(| 0)+[1)), with the constraint
(25)

| Ty= k(| 0)—| 1)). F=1+\1(1-a?—c?)(a+0). (33
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This can be done analytically with the help of Lagrange mul-our cloner from a contradiction: let us assume the cloner

tipliers. The solution for the optimum is could have a higher fidelity than the one indicated by the
intersection of the information curves. Then Eve could use it
a=1+/1, to eavesdrop and would have found a better spying device

than the optimal one. Therefore, the best cloner cannot have

a higher fidelity than the best symmetric eavesdropping at-
(39 . . .

tack. In this section we have shown a constructive proof for

the corresponding optimal cloning transformation.

This solution corresponds to an optimal fidelity of V. CONCLUSIONS

In this paper we have pointed out a connection between
FoPi(1,2 =%+ \/Ez 0.854, (35  optimal cloning of equatorial qubits and phase estimation.
We exploited this connection to establish an upper bound for
which reaches the bourﬁjpcc(l,Z)z %[%pcc(1,2)+ 1], given the fidelity of a phase covarial— M cloning transforma-
by Eq.(22). tion acting on equatorial qubits. Our results for this restricted
The optimal cloning transformation for the BB84 statesset of inputs are qualitatively similar to the ones for universal
can be written explicitly as followfwe see that a two- cloning, in the sense that in both cases the concatenation

dimensional ancilla is sufficient property holds. Quantitatively our upper bound is higher than
the one for universal cloning, as expected. The bound for
Ul 0)] 0)| Xy=(3+ \/g)| 00)| 0) + \/g(| 01 +| 10))| 1) phase-covariant cloning was shown to be reachedNor
=1M=2 by constructing the optimal cloning transforma-
+(3- \/g)| 11)| 0), tion explicitly. In this particular case we also found a link

(36) between phase-covariant cloning and optimal eavesdropping
1 1 1 strategies in the quantum cryptographic scheme BB84. Find-
UIDI0)X) =+ \/g)| 1D 1)+ \/;(| 10)+[01)] 0) ing the explicit optimal phase-covariant cloning transforma-

tion for generalN andM remains to be achieved.
+(i-hl oo 1). ?

We still have to show that this transformation leads to the ACKNOWLEDGMENTS
same fidelity fqrany pure input s_tate taken from the equator. This work was supported in part by Deutsche Forschungs-
In fact, any unitary transformation of the kind gemeinschaft under Grant SFB 407, by Ministero

dell’'Universitae della Ricerca Scientifica e Tecnologica un-
der the project “Amplificazione e rivelazione di radiazione

(37

U] 0)| 0)] X)=a| 00)| 0)+b(| 01)+[ 10))| 1) +c| 11)[ 0),

APPENDIX: MAP OF THE PHASE COVARIANT CLONER
that leads to the same fidelity for the BB84 states has this -
property. This can be seen by calculating the fidelity when We use the Kraus decompositi¢s] of a CP map(the
applying the transformationi37) to the state given in Eq. MapRTywv in Eq.(2) is CP since it is the partial trace of the
(24). We find CP mapTy ]

— 4 4\ 42 2 2 n2 2 2 n2
F(a) (a +B )a +b+ « B 2c°+4a B b(a+c)638) R[TN,M(| ¢><¢|®N)]:Zk Ak| w><¢|AT, (Al)

which at first glance does not look like a constant, but can b?vhereA are operators oft{ depending orN and M, satis-
shown easily to be independent afby inserting Eq.(31) fying thé condition ’

and the constraints from unitarity, given in Eg7). Thus we
have shown that apart from the four BB84 states our cloner
[Eq. (36)] is optimal forany state from the equator. E AlAk=JL (A2)
It is worth pointing out that there is a link between opti- k
mal cloning of equatorial qubits and optimal eavesdropping
in the BB84 scheme, see R¢fL1]: the intersection of the
curve for the mutual information between Alice and Bob and
the curve for the optimal mutual information between Alice 1 1
and Eve occurs at a disturbaride= 1—F which corresponds oo=5(oytioy), o1=5(oyx—ioy), (A3)
to our optimal equatorial cloning fidelity. If Eve performs a 2 2
symmetric attack where she gets as much information as
Bob, she cannot find a better strategy than applying the best
cloner. We could have actually proved an upper bound for

By introducing the following basis for the algebra of the
operators orH

1 1
0225(1+0'z)1 0'325(1_0'2)1 (A4)
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we can write in general
3

A=, Clog, (A5)
a=0

with ¢, e C. It follows that

3

> cicft ol )y lo

a,=0

R[ T w><w|®“>]=§

3

— af
;OF S s (8],

a,B=

(AB)

with 3 (| ) (¢ [)= 0ol Y9 o and D *F=3cicf* .
Imposing the phase-covariance conditi@hto the above
CP map and using E¢A6) we find

;ﬁ T3 4(U, | ¢><¢f|u;>=a2ﬁ TPULS 6| W) UY .
(A7)

Writing down explicitly each term of EqA7) and imposing
that the equality hold¥ y €[ 0,27r) we obtain the following
constraints on the coefficienfs*?:

1'*01: 1"02: 1"03: 0,

FlOZ F12: 1"13: 0’

(1-T33)(1-6)+T%%6
,y* (1"32)*

R[TN,M(| ¢’><1/’|®N)]=

Let us now use the notation,,=|I"%4, p=arg("*?) and
7,=(I'*3+T%~-1). Note that 8 ,,<1, —1<7,<1, and
Mxy,z= Txy,2(N,M): the dependence dd andM is included
in the coefficients; .

PHYSICAL REVIEW A 62012302

r 20_ r 21_ 0,
r30=r3=0. (A8)

In order to obtain Eq(A8) we have written a general density

matrix in H as
o v
=l y* 1-6

with §€[0,1] and ye C. Condition(A2) takes the form
3

(A9)

> TPeglag=1, (A10)
a,B=0
which gives
r'=1-1r2 1%=1-1838 (A11)

Note thatI'**=3,|c¢|?=0 Va and I'*#=(T'A%)*. Using
Eqg. (A11) we have 6<I'**<1 and|cg|<1V «, from which
we obtain
2
<> |cie2* |P<T?r¥<1.
k
(A12)

Using conditiongA8) and(A11) we can now write Eq(A6)
in matrix form as follows:

r2=| 3 el

,yl'*32
(1—r22)5+r33(1—5))- (A13)

1
= y(NM)[ ) (s [ + 511 = my(NLMD T, (AL6)

Comparing the Bloch vector of an input generic qubitje., the action of of the phase-covariant clorfgg, on
s"=[2|y|cos¢,—2|ylsinh,26— 1) where p=arg(y) with  equatorial qubits is completely determined by the shrinking
the Bloch vector of the one-particle reduced density matrixfactor 7,,(N,M) in the x-y plane.
of the output §out=(277pcc| y|cos@+¢),—27,dYsing Let us now show that without loss of generality we can
+¢),§}nﬂz+(rzz— '33)], we notice that for impose the conditionA14) to describe the map of an opti-

mal phase-covariant cloner for equatorial qubits. ket 0
¢=0 and I'??=T3 (Al4) the fidelity for equatorial qubits is given by
the map Ty v is completely determined by the factors
7xy(N,M) and7,(N,M): #,,(N,M) describes the shrinking
of the Bloch vector in thex-y plane, while , gives the
shrinking along thez axis. For initial equatorial qubits&

=1/2, y=€'*%/2) we find with the condition§A14):

chc(NrM):|<'/’¢|R[TN,M(| '/fd))(’r//dz |®N)]|1//¢>|2

1
= 511+ 75(N,M)cose]. (AL7)

1 (N,M)e'¢
Ny P By definition the optimal cloneTy y is th hich maxi
RIT( )4 |5M)]= 5 N M)e-i¢ 1 y definition the optimal cloneFy, y is the one which maxi-
daTe 2| m(N:M)e mizesF ,.(N,M). From Eq.(A17) we see that maximizing
(A15) FocdN,M) is equivalent to settingp=0 and maximizing
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7xy(N,M), which is independent ap. single-particle reduced density operator is the matrix
Let us now analyze the condition??>=13 Let us sup- R[Tnwm(| ¥4){(¥4|®™)] written in the form(A6) with the
pose that we can find an optimal phase-covariant cloRgy exchange 2:3. The map?N’M must also be optimal: in fact,
with 72P'(N,M) andI'??# %, From the explicit form ofr,  optimality of Ty y cannot depend on the particular choice of
and o3, given in Eqg.(A4), one can see that renaming the the basis, and the fidelityA17) is invariant under the ex-
basis(i.e., exchanging 0)«| 1)) is equivalent to exchang- change 2-3. Now consider the cloner described by the map
ing 0,03 and gp— oy, While leaving the basis vectors T =3(Ty y+ Ty ). This cloner has the same shrinking fac-
unchanged. The exchange—2 leaves 7,,(N,M) and  tor 5%P(N,M) for equatorial qubits. Therefore we can al-

7,(N,M) invariant. Now consider a clondh, y, such thatits ways construct an optimal cloner witP??=T33,
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