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We propose an experimental scheme for the cloning machine of continuous quantum variables through
a network of parametric amplifiers working as input-output four-port gates.
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Since the seminal paper of Bužek and Hillery [1], much
theoretical work has been done about quantum cloning
[2–6]. In Ref. [5] the problem of copying the state of
a system with continuous variables has been studied, and
a unitary transformation that clones coherent states with
the same fidelity (equal to 2�3) has been found. However,
proposals of its experimental realization have not appeared
yet. In this Letter, we propose an experimental scheme to
implement such a new kind of cloning. Under suitable gain
conditions we show that a network of three parametric am-
plifiers realizes the one-to-two cloning machine for “dis-
tinguishable” clones. In fact, optimal cloning machines
can be achieved using parametric down-converters, in two
different ways. The first way, proposed in Ref. [7], uses
a single “quantum-injected” parametric amplifier in a con-
figuration already used in many experiments [8], where a
one-photon state is down-converted into a many-photons
entangled state. This contains clones of the injected state,
which are supported by indistinguishable photons [9]. This
way can then be used for measurements of permutation-
invariant observables on clones, and allows one to study
the clones’ statistics [10]. The second way is the subject
of this Letter: a one-to-two cloning machine for distin-
guishable clones, based on parametric gates.

A relevant application of universal covariant cloning
is eavesdropping for quantum cryptography [2]. More-
over, quantum cloning is of practical interest as a tool to
engineer a novel scheme for joint measurements. How-
ever, universal covariant cloning is not ideal for such a
purpose, and a suitable nonuniversal cloning is needed
[11]. If one wants to use quantum cloning to realize joint
measurements, cloning must be optimized for a reduced
covariance group, depending on the desired joint mea-
surement, such that measurements on cloned copies are
equivalent to optimal joint measurements on the original.
As we will show, this is the case of the cloning map pro-
posed in Ref. [5], which is covariant only with respect to
the Weyl-Heisenberg group represented by the displace-
ment operator, and which is optimal for the joint mea-
surement of conjugated quadratures. Hence, measures of
quality other than fidelity should be used for optimization,
depending on the final use of the output copies. This is
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also indicated by recent studies of copying machines de-
signed for information transfer [12]. Notice also that the
major problem in quantum teleportation — the Bell mea-
surement —may need a general scheme for designing joint
measurements, as shown in Ref. [13], where the Bell-like
measurement is achieved by a probability operator-valued
measure (POVM) that generalizes the joint measurements
of position momentum, or the measurement of the “direc-
tion” of the angular momentum.

We need to introduce some preliminary mathematics.
Consider the heterodyne-current operator [14] Z � a 1

by, which satisfies the commutation relation �Z, Zy� � 0
and the eigenvalue equation Zjz��ab � zjz��ab , with z [
�. The eigenstates jz��ab are given by [15]

jz��ab � Da�z� j0��ab � Db�z�� j0��ab , (1)

where Dd�z� � ezdy2z�d denotes the displacement opera-
tor for mode d and j0��ab � �1�

p
p �

P`
n�0�21�njn�a ≠

jn�b on the Fock basis. The eigenstates jz��ab are a
complete orthogonal set with Dirac-delta normaliza-
tion ab��z j z0��ab � d�2��z 2 z0�. For z � 0 the state
j0��ab can be approximated by a physical (normalizable)
state—so-called twin beam—corresponding to the output
of a nondegenerate optical parametric amplifier (NOPA)
in the limit of infinite gain [15].

For the following, it is also useful to evaluate the ex-
pression cb��z j z0��ab which is given by

cb��z j z0��ab �
1
p

Da�z0�TacDy
c �z� , (2)

where Tac �
P

n jn�ac�nj denotes the transfer operator
[13] satisfying the relation Tacjc�c � jc�a for any vec-
tor jc�. Here we briefly transpose the main results of the
continuous variable cloning in Ref. [5], in a compact for-
malism suited to the following treatment. The input state
at the cloning machine can be written

jf� � jw�c ≠
Z

�
d2z f�z, z�� jz��ab , (3)

where jw�c is the original in the Hilbert space Hc,
to be cloned in Hc itself and Ha, whereas Hb is an
© 2001 The American Physical Society
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ancillary Hilbert space. We do not specify for the moment
the explicit form of the function f�z, z��. The cloning
transformation is realized by the unitary operator [5]

U � exp��Xc 1 iYc�Zy 2 �Xc 2 iYc�Z� , (4)

with Xc and Yc denoting the conjugated quadra-
tures for mode c, namely, Xc � �c 1 cy��2 and Yc �
�c 2 cy��2i. Notice that one has Ujz��ab � Dy

c �z� jz��ab .
The state after the cloning transformation is given by
jf�out � Ujf�. Let us evaluate the one-site restricted
density matrix �c and �a corresponding to the state
jf�out, for the Hilbert spaces Hc and Ha supporting the
clones. For �c one has

�c �
Z

�
d2w

Z
�

d2z
Z

�
d2z0 f�z, z��f��z0, z0��

3 ab��wjDy
c �z�jw�cc�wjDc�z0� ≠ jz��abab��z0 jw��ab

�
Z

�
d2z j f�z, z��j2Dy

c �z� jw� �wjDc�z� , (5)

where we have evaluated the trace by using completeness
and orthogonality of the eigenstates jw��ab of Z. For �a,
using Eq. (2), one has

�a �
Z

�
d2w

Z
�

d2z
p

Z
�

d2z0

p
f�z, z��f��z0, z0��

3 Da�z�Tac�Dy
c �w�Dy

c �z� jw�c c�wjDc�z0�Dc�w��

3 TcaDy
a �z0�

�
Z

�
d2w j ef�w, w��j2Dy

a �w� jw�a a�wjDa�w� , (6)

where ef�w, w�� denotes the Fourier transform over
the complex plane ef�w, w�� �

R
�

d2z
p ewz�2w�zf�z, z��.

Hence, for f�z, z�� �
p

2�p e2jzj2 one has two identical
clones �c � �a, which are given by the original state jw�
degraded by Gaussian noise. The state preparation jx�
pertaining to the Hilbert space Ha ≠ Hb is given by [11]

jx� �

s
2
p

Z
�

d2z e2jzj2 jz��ab

� earctanh�1�3� �ab2ayby�jn�a ≠ jn�b . (7)

One recognizes in Eq. (7) the twin-beam state at the output
of a NOPA with total number of photons N � �xjaya 1

bybjx� � 1�4.
Quantum cloning allows one to engineer new joint mea-
surements. In fact, suitable measurements on the cloned
copies are equivalent to a joint measurement on the origi-
nal. Let us now consider a joint position momentum on
the original copy through the present scheme. More pre-
cisely, in our case measuring two quadratures on the two
clones will be equivalent to the joint measurement of a
couple of conjugated quadratures on the original, namely,
to a heterodyne measurement. This can be shown as fol-
lows. Consider the entangled state � at the output of the
cloning machine, after tracing over the ancillary mode b.
One has

� �
1
2

Pca�jw�c c�wj ≠ 'a�Pca, (8)

where Pca is the projector given by

Pca � V �j0�c c�0j ≠ 'a�Vy, (9)

with V � exp�p

4 �cya 2 cay��. Measuring the quadra-
tures Xc and Ya is then equivalent to perform the measure-
ment on the original state jw�c described by the POVM

F�x, y� � Tra�Pcajx�c c�xj ≠ jy�a a�yjPca� , (10)

where jx�c and jy�a denote the eigenstates of Xc and Ya,
respectively. From the following relations [15]

Vyjx�c c�xj ≠ jy�a a� yjV � 2j
p

2 �x 2 iy���ca

3 ca��
p

2 �x 2 iy�j ,

V ja�c ≠ jb�a � j�a 1 b��
p

2 �c

≠ j�b 2 a��
p

2 �a ,

c�0 j z��ca �
1

p
p

jz��a ,

(11)

one obtains

F�x, y� �
1
p

jx 1 iy�c c�x 1 iyj , (12)

namely, the coherent-state POVM, which is the
well-known optimal joint measurement of conjugated
quadratures Xc and Yc [in Eq. (12) and in the last two
lines of Eq. (11) single-mode vectors are coherent states].

Equations (8) and (9) allow one to show that the cloning
machine here considered is covariant with respect to the
Weyl-Heisenberg group, represented by the displacement
operator. One has
1
2

Pca���Dc�a�jw�c c�wjDy
c �a� ≠ 'a���Pca � Dc�a� ≠ Da�a��Dy

c �a� ≠ Dy
a �a� . (13)
In the following we show that the unitary evolution in
Eq. (4) can be obtained from a network of three NOPA’s
under suitable gain conditions. We rewrite Eq. (4) as
U � exp�B 1 A�, with B � cay 2 cya and A � bc 2

bycy. Upon defining C � ab 2 ayby, one easily checks
the commutation relations �C, A� � B, �C, B� � A, and
�B, A� � C. Hence, the following identity holds:

elCAe2lC � cosh�l�A 1 sinh�l�B . (14)
From Eq. (14) one obtains the realization for the opera-
tor U

U � lim
l!`

elCe2e2lAe2lC . (15)

Each term in the product of the right-hand side of Eq. (15)
is realized by a NOPA. The continuous variable cloning
from one to two copies is then achievable in the limit
915
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FIG. 1. Network of parametric amplifiers realizing the con-
tinuous variable one-to-two cloning. The values of the gain
parameters are given in Eqs. (17).

l ! ` through the network of parametric amplifiers de-
picted in Fig. 1. Notice that the evolution operator for the
generation of the input state of Eq. (7) can be absorbed
into the last factor of the product in Eq. (15), yielding the
overall unitary transformation

U 0 � elCe2e2lAe�arctanh�1�3�2l�C . (16)

The gain values of the three amplifiers are constrained as
follows

G1 � cosh2�l 2 arctanh1�3� ,

G2 � cosh2�2e2l� ,

G3 � cosh2l .

(17)

Notice that a cascade of N networks could produce 2N

clones. However, as shown in Ref. [4], this is not an
efficient way to produce multiple clones.

In the following we provide the POVM correspond-
ing to the measurement of two quadratures Xc�w� �
�cyeiw 1 ce2iw� and Xa�u� � �ayeiu 1 ae2iu� over the
two clones, in the case of realistic cloning (l , `). For
0 , u 2 w , p , one obtains the POVM

Fl�x, x0; w, u� �
1

4p

Cjdj2
p

CD 2 E2

3 Sy�j�D�ad��Dy�ad�S�j� , (18)

where

a � 2
i
2

x 1
Cx0 2 Ex

2
p

CD 2 E2
,

� �
4

Cjdj2 1 2

µ
Cjdj2 2 2
Cjdj2 1 2

∂cyc

,

C � �sinh´ sinhl0�2 1
1
2

sinh2´ ,

D � �coshl coshl0 2 sinhl cosh´ sinhl0�2

1
1
2

�sinhl sinh´�2 2
1
2

,

E � cos�w 2 u�
∑

sinh´ sinhl0�coshl coshl0

2 sinhl cosh´ sinhl0� 2
1
2

cosh´ sinhl sinh´

∏
,

d � 2�jgj2 2 jbj2�21�2e2i argg ,
916
b �
1
4

cosh´eiw

√
i 1

E
p

CD 2 E2

!

1
1
4

sinhl sinh´eiu C
p

CD 2 E2
,

g �
1
4

cosh´eiw

√
2i 1

E
p

CD 2 E2

!

1
1
4

sinhl sinh´eiu C
p

CD 2 E2
,

j � arccosh�jgdj�ei�argg1argb�, (19)

with ´ � 22e2l and l0 � l 2 arctanh1�3.
Notice that for l ! ` and u 2 w � p�2 one gets the

result in Eq. (12); namely, one achieves the ideal POVM
for simultaneous measurement of conjugated quadratures.

Now we can evaluate the added noise for simultane-
ous measurement of conjugated quadratures over the two
clones. One has the following input-output relations be-
tween the expectation values over the two clones �· · ·�o at
the output and the expectations �· · ·�i for the inputs

�Xc�o � cosh´�Xc�i ,

�Ya�o � sinhl sinh´�Yc�i ,

�X2
c �o � cosh2´�X2

c �i

1
1
4

sinh2´�2 sinh2l0 1 1� ,

�Y2
a �o � sinh2l sinh2´�Y2

c �i

1
1
4

�coshl coshl0 2 sinhl sinhl0 cosh´�2

1
1
4

�sinhl coshl0 cosh´ 2 coshl sinhl0�2.

(20)

In the limit of l ! ` one has

�DX2
c �o ! �DX2

c �i 1
1
4

,

�DY2
a �o ! �DY2

c �i 1
1
4

,

(21)

which proves the optimality of the joint measurement [16].
The behavior of the product of variances for the simulta-
neous measurement of Xc and Yc via homodyne detection
over clones is plotted in Fig. 2, for arbitrary coherent state
(for which �DX2

c �i � �DY2
c �i � 1�4). Notice that for in-

creasing value of l the optimality of the joint measurement
is rapidly achieved.

The condition f�z, z�� � ef�z, z�� for Eqs. (5) and (6) in
order to obtain identical clones can be satisfied also by a
bivariate Gaussian of the form

f�z, z�� �

s
2
p

exp

µ
2

Re2z
s2 2 s2 Im2z

∂
. (22)
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FIG. 2. Optimal joint measurement of conjugated quadratures
via continuous variable cloning and homodyne detection, for
arbitrary coherent input state. The bound �DX2� �DY2� � 1�4
is achieved by increasing the parameter l which provides the
optimal cloning for l ! ` (the plot is independent of the am-
plitude of the coherent state).

In such a case, as shown in Ref. [11], the cloning trans-
formation becomes optimal for the joint measurement of
noncommuting quadratures Xf and X2f, at angles which
depend on the parameter s in Eq. (22) as f � arctan�s2�.

As regards the experimental realization of the network
in Fig. 1, the scheme which is presently engineered in
our lab in Rome works with an injection method similar
to the one used in the implementation of the all-optical
Schrödinger-cat of Ref. [8]. Three identical equally ori-
ented nonlinear crystals of beta-barium-borate cut for type
II phase matching are excited by coherent beams derived
from a common UV beam at wavelength lp � 400 nm.
In the present experiment the UV beam is supplied by
second harmonic generation of the output of a coherent
MIRA TI:SA mode-locked laser consisting of a train of
150 fs pulses emitted at a rate of 76 MHz. The average
output power does not exceed 0.6 W, and then the ampli-
fication gain is of the order g 	 0.02, where G � cosh2g
in Eqs. (17). We expect a far larger efficiency by the forth-
coming implementation within the apparatus of a regenera-
tive NOPA Coherent REGA9000. In this case the value
of g is multiplied by an adjustable factor in the range
10 50, and the cloning efficiency is expected to increase
by the same factor. The nonlinear crystals emit p-
entangled photons with wavelength l � 800 nm over
two modes determined by two fixed 1 mm pinholes
placed 2 m away from the source crystals. The conditions
imposed by Eqs. (17) are achieved by a precise setting of
the intensity of the three single-mode UV pump beams by
use of adjustable circular neutral density filters newport
946. Great care is taken in space-mode filtering which
selects the injection modes through the pinholes. The
spatiotemporal superposition for such short pulses and
mode matching at homodyne detectors are the main
experimental challenges.

In conclusion, our experimental scheme based on a net-
work of three NOPA’s is designed for engineering quantum
clones of harmonic oscillator states. For increasing gain,
optimality is achieved in performing joint quadrature mea-
surements via cloning.
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