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We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle
sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In
particular, we find a wider variety of scattering processes, we have bound states for every value of the total
momentum, and there exist bound states also in the free case, where the coupling constant is null.
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Quantum cellular automata and quantum walks constitute
an increasingly attractive arena for research in many-body
systems [1–3], quantum computation [4–7], and foundations of
quantum field theory [8–12]. The notion of the quantum cellu-
lar automaton introduced by Feynman [13] as a universal quan-
tum simulator was mathematically formalized in Refs. [14,15].
In the case of noninteracting theories the evolution of field
operators is linear and its simulation through quantum cellular
automata reduces to simulation of a single particle through
a quantum walk [16–18]. The interacting case is largely
unexplored and was mainly approached by extending the
quantum walk formalism, introducing decoherence [19,20],
or a classical external field [10,21–23]. Notable exceptions
are Ref. [24], where bound states in interacting Hadamard
quantum walks are studied, and Refs. [25,26], where quantum
walks coupled by nonlinear terms are considered.

In the present paper we study a one-dimensional massive
fermionic cellular automaton with a four-fermion on-site
interaction. The main result consists in the complete analytical
solution in the two-particle sector. The linear part of the
evolution corresponds to a one-dimensional Dirac walk [10],
with an interaction having the most general on-site number-
preserving form. The same kind of interaction characterizes
the most studied integrable quantum systems [27–30] such as
Hubbard’s [31] and Thirring’s [32] models. For this reason we
call the present model Thirring quantum cellular automaton.

Despite the similarities, the present quantum cellular au-
tomaton differs from the above models mainly in the discrete-
ness of time evolution. This feature produces nontrivial differ-
ences in the dynamical solutions of the model, in particular a
wider spectrum of scattering states and the existence of bound
states for every value of the total momentum. As a consequence
of the departure of the present discrete-time evolution from the
usual Hamiltonian paradigm, we are not allowed to borrow the
common Bethe ansatz technique straightforwardly.
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We start by defining a quantum cellular automaton for
interacting particles on the lattice Z, assuming the particle
statistics to be fermionic. First we introduce the walk W for
a free two-component fermionic field ψ defined at any lattice
point x ∈ Z and at any discrete time t ∈ Z,

ψ(x,t + 1) = Wψ(x,t), ψ(x,t) =
(

ψ↑(x,t)

ψ↓(x,t)

)

W =
(

νT
†
x −iμ

−iμ νTx

)
, ν,μ > 0, ν2 + μ2 = 1, (1)

where Tx is the translation operator Txφ(x) = φ(x + 1) and
ψ↑ and ψ↓ denote the two components of the field. Since
the evolution of Eq. (1) describes noninteracting particles,
the one-particle sector completely specifies the dynamics. The
one-particle walk is a unitary operator W1 over the Hilbert
space H = C2 ⊗ �2(Z) for which we will use the factorized
orthonormal basis |a〉|x〉, with a ∈ {↑ , ↓}. Accordingly, the
evolution of N free fermions is given by WN = W⊗N

1 . It is
convenient to express the one-particle walk in the momentum
basis (|p〉 := (2π )−1/2 ∑

x e−ipx |x〉, p ∈ (−π,π ]) as

W1 =
∫

dp W1(p) ⊗ |p〉〈p|,W1(p) =
(

νeip −iμ

−iμ νe−ip

)

W1(p)vs
p = e−isω(p)vs

p, vs
p := 1

|Ns |
( −iμ

gs(p)

)
,

ω(p) := arccos(ν cos p), s ∈ {+,−}, (2)

with gs(p) = −i[s sin ω(p) + ν sin p] and |Ns |2 = μ2 +
|gs |2. Notice that the walk evolution is local, with the field
at time t and at site x depending only on the field at sites x ± 1
at time t − 1, and it recovers the dynamics of a free Dirac field
of mass μ in the limit of small p [8,9,33].

The Thirring quantum cellular automaton is now defined as

U = W V (χ ), V (χ ) = eiχn↑(x)n↓(x), (3)

where na(x) = ψ
†
a (x)ψa(x) is the number operator at site

x and with internal state a ∈ {↑ , ↓} and χ ∈ [−π,π ] is
the automaton coupling constant. The interacting term V (χ )
corresponds to an on-site coupling, namely, the action of V (χ )
is nontrivial if and only if two fermions lie at the same site
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of the lattice. Moreover, V (χ ) is the most general on-site
coupling of fermions that preserves the number of particles
[34] (one can easily verify that V (χ ) commutes with the
total number operator n = ∑

x[ψ†
↑(x)ψ↑(x) + ψ↓†(x)ψ↓(x)]).

Since the Thirring quantum cellular automaton is number
preserving, the evolution of N fermions can be written as
UN := WNVN = W⊗N

1 VN (χ ) where the Hilbert space of the
system is HN = H⊗N .

Typically, an interacting dynamics cannot be solve analyti-
cally and one resorts to analytical approximations or numerics
(or both). However, there exist dynamical models in which the
complete analytical solution can be derived. These are called
quantum integrable systems, and paradigmatic examples are
the Thirring model and the Hubbard model in one dimension.
A rigorous characterization of quantum integrable systems
is missing; however, roughly speaking, we may say that a
quantum field theory is integrable if the many-body dynamics
can be reduced to a two-body dynamics (free theories can
be thought of as the case in which the dynamics is one-body
reducible). Quantum integrable models are rather peculiar and
occur in one spatial dimension. Nevertheless, they provide
paradigmatic frameworks for many phenomena, which can be
studied in full detail, and provide benchmarks for approximate
and numerical methods.

Since the quantum cellular automaton (QCA) theory that
we introduced in Eq. (3) has the same interaction term as
the Hubbard and Thirring models, one could wonder whether
this is a quantum integrable model as well. All the quantum
integrable systems that are known today are solved via the
so-called Bethe ansatz. The technique works as follows:
(i) Solve the two-particle dynamics, (ii) create an ansatz for the
solution of the N -particle case from the two-particle solution,
and (iii) verify that the ansatz gives all the solutions. Despite
some additional technical difficulties, the first step of the
procedure can be accomplished also for the two-particle sector
of the Thirring quantum cellular automaton. Surprisingly, we
will show that the solution of the two-particle case substantially
differs from the analogous solution of the Hubbard or Thirring
model. These unexpected features of the two-particle dynamics
give rise to a rich phenomenology (most notably, a richer family
of scattering processes) that presents interesting scenarios for
research. Unfortunately, because of these differences from
the known integrable models, the usual N -particle ansatz
cannot be applied to the Thirring quantum cellular automaton.
Whether the dynamical model (3) could be a different quantum
integrable system remains an open question.

We now focus our attention on the analytical solution of the
two-particle sector of our QCA model. For N = 2 the Thirring
quantum cellular automaton becomes

U2 := W2V2(χ ), V2(χ ) := eiχδy,0(1−δa1 ,a2 ), (4)

where we introduced the center-of-mass basis |a1,a2〉|y〉|w〉
for the two-particle Hilbert space H2 = C4 ⊗ �2(Z), with
a1,a2 ∈ {↑ , ↓} and y = x1 − x2 and w = x1 + x2 the relative
and the center-of-mass coordinate, respectively. Defining the
(half) relative momentum as k = 1

2 (p1 − p2) and the (half)
total momentum as p = 1

2 (p1 + p2), the free eigenstates W2

in the momentum representation is written as

W2 =
∫

dk dp W2(p,k) ⊗ |k〉〈k| ⊗ |p〉〈p|,

W2(p,k)vsr
p,k = e−iωsr (p,k)vsr

p,k, vsr
p,k := vs

p+k ⊗ vr
p−k,

ωsr (p,k) := sω(p + k) + rω(p − k), s,r ∈ {+,−}, (5)

where the eigenvectors of W2(p,k) := W1(p + k) ⊗ W1(p −
k) are easily computed as the tensor product of the single-
particle eigenstates in Eq. (2).

Since the interacting dynamics U2 commutes with transla-
tion Tw in the center-of-mass coordinate w, it is convenient
to write the walk in the hybrid basis |a1,a2〉|y〉|p〉, in the
block-diagonal form

U2 =
∫

dp U2(χ,p) ⊗ |p〉〈p|, U2(χ,p) := W2(p)Ṽ2(χ ),

W2(p) := μν

⎛
⎜⎜⎜⎜⎝

ν
μ
ei2p −ieipTy −ieipT

†
y −μ

ν

−ieipTy
ν
μ
T 2

y −μ

ν
−ie−ipTy

−ieipT
†
y −μ

ν
ν
μ
T

†
y

2 −ie−ipT
†
y

−μ

ν
−ie−ipTy −ie−ipT

†
y

ν
μ
e−i2p

⎞
⎟⎟⎟⎟⎠,

Ṽ2(χ ) :=

⎛
⎜⎜⎜⎝

I 0 0 0

0 eiχδy,0I 0 0

0 0 eiχδy,0I 0

0 0 0 I

⎞
⎟⎟⎟⎠,

with Ty the translation in the relative coordinate y. Then,
solving the two-particle dynamics means diagonalizing the
infinite-dimensional operator U2(χ,p). Typically, an infinite-
dimensional eigenvalue problem cannot be analytically
solved. However, we will show that the eigenvalue problem
U2(χ,p)|ψ〉 = eiω|ψ〉 can be suitably reduced to a finite set of
algebraic equations that can be analytically solved.

First, let us consider the linear difference equation

U2(χ,p)fp,ω,χ = eiωfp,ω,χ ,

fp,ω,χ : Z → C4, ω ∈ C (6)

for any possible value of χ and p. Among all the possible
solutions of Eq. (6) we will then choose those which are eigen-
vectors (or generalized eigenvectors) of U2(χ,p) considered as
an operator on the Hilbert space C4 ⊗ �2(Z).

Since the interacting particles are fermions, we are only
interested in the solutions that are antisymmetric under the
exchange of the two particles, i.e.,

fp,ω,χ (y) = −Efp,ω,χ (−y),

where E is represented as E = 1
2

∑3
i=0 σi ⊗ σi (with σ0 = I

and σi , i = 1,2,3, the Pauli matrices). In the following, in order
to simplify the notation, we will omit the explicit dependence of
the solutions from p,ω,χ and we will write f(y) for fp,ω,χ (y).

Since the interacting term acts only at the origin, for y > 0
Eq. (6) becomes a linear recurrence relation with constant
coefficients whose most general solutions [35] are of two
forms, f∞(y) or f(y), given by

f∞(y) = (ζ∞,0,0,ζ ′
∞)T δy,1, ζ∞,ζ ′

∞ ∈ C, y > 0, (7)
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FIG. 1. The top plot shows kR and kI representing the real and
the imaginary part of the relative momentum k in the two-fermion
state. The highlighted regions collect the values of k ∈ C providing a
real value of the quasienergy ω. On the bottom the disjoint subregions
of the unit circle are the images under k �→ eiωrs (p,k) of the disjoint
regions in the top figure, for fixed values of the total momentum
p = 0.55 and mass μ = 0.8. Here �f coincides with the continuous
spectrum of U2(χ,p) [see Eq. (4)]. The discrete spectrum lies in the
other regions and for a fixed value of the coupling constantχ it consists
of a single point. Varying the value of χ , the unit circle is covered and
the boundary points of the arcs depend on p.

f(y) =
∑

s,r=±

∫
S

dk e−ikygω(s,r,k)vsr
k , y > 0,

k = kR + ikI , S := {k ∈ C | kR ∈ (−π,π ]},
gω(s,r,k) ∈ C : e−iω �= e−iωsr (p,k) ⇒ gω(s,r,k) = 0, (8)

where the function ωrs(p,k) and the vectors vsr
k := vsr

p,k have
been defined in Eq. (5), and for a complex argument arccos is
the principal value of the arccosine function.

Let us first consider the functions given by Eq. (8).
A necessary condition for a function obeying Eq. (8) to
be a (proper or improper) eigenvector of U2(χ,p) is that
ωsr (p,k) ∈ R. In order to analyze this condition, it is

useful to introduce the following sets (see Fig. 1):

f := {k ∈ S|kI = 0},
z := {k ∈ S|kR = zπ

2 }, z = 0,±1,2, (9)

�sr
f := {exp[−iωsr (p,k)]|k ∈ f },

�sr
z := {exp[−iωsr (p,k)]|k ∈ z,(−1)z = sr}. (10)

Recalling that ω(x + π ) = π − ω(x), one can verify that

�++
f = �−−

f , �+−
f = �−+

f , �++
0 = �−−

2 ,

�++
2 = �−−

0 , �+−
−1 = �−+

1 , �+−
1 = �−+

−1 . (11)

The following technical result, proved in Appendix A, marks
the first important difference from the Hamiltonian integrable
models, relying on the degeneracy of two-particle levels. The
degeneracy in the Hamiltonian case is 2, corresponding to
the intuitive one-dimensional picture where either a classical
elastic bounce or a quantum tunneling where the particles cross
each other occurs. On the other hand, in the discrete case, due
to periodicity of the quasienergy spectrum, the degeneration
is 4. As we will see, this feature allows for scattering events
where hopping to a distant region in the Brillouin zone can
occur and for a wider family of bound states. From a technical
point of view, the larger degeneracy of the two-particle levels is
also responsible for the failure of the N -particle Bethe ansatz.

Lemma 1. Let ωsr (p,k) be defined as in Eq. (5) and let us
assume p �= zπ

2 (z ∈ Z).
(a) Then we have

ω±±(p,k) ∈ R ⇒ k ∈ f ∪ 0 ∪ 2,

ω±∓(p,k) ∈ R ⇒ k ∈ f ∪ −1 ∪ 1. (12)

(b) The six sets �++
f ,�+−

f ,�++
0 ,�++

2 ,�+−
−1 ,�+−

1 are dis-
joint and their union is the whole unit circle except for the
points e±i2p.

(c) For any ω ∈ R such that e−iω �= e±i2p the equation
e−iω = e−iωsr (p,k) has four distinct solutions. If the triple
(+, + ,k) is a solution then also (+, + ,−k), (−,−,π − k),
and (−,−,k − π ) are solutions. If the triple (+,−,k) is a
solution then (−, + ,−k), (+,−,π − k), and (−, + ,k − π )
are solutions.

By Lemma 1, Eq. (8) yields two classes of solutions:

f+
k (y) with k ∈ f ∪ 0 ∪ 2,

f−
k (y) with k ∈ f ∪ −1 ∪ 1,

f±
k (y) =

⎧⎪⎨
⎪⎩

[α±v+±
k − (−1)yδ±v−∓

k−π ]e−iyk − [β±v±+
−k − (−1)yγ±v∓−

π−k]eiyk, y > 0

(0,η±,−η±,0)T , y = 0

antisymmetrized, y < 0,

(13)

where α±,β±, . . . are complex coefficients which depend on p,k,m,χ . We now determine these coefficients by requiring that
Eq. (6) is satisfied. Because of the locality of the evolution, this constraint needs to be verified only for y = 0,1,2. A tedious
albeit straightforward calculation allows one to put Eq. (13) into the following form after suitable reparametrization:

f±
k (y) = c1f±,f

k (y) + c2f±,i
k (y),

f±,f

k (y) = [v+±
k + (−1)yv−∓

k−π ]e−iyk − [v±+
−k + (−1)yv∓−

π−k]eiyk,
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f±,i
k (y) =

{
e−iδy,0χ {[v+±

k − (−1)yv−∓
k−π ]e−iyk − T±[v±+

−k − (−1)yv∓−
π−k]eiyk}, y � 0

antisymmetrized, y < 0,

T± := g+(p + k) + e−iχg±(p − k)

g±(p − k) + e−iχg+(p + k)
, c1,c2 ∈ C. (14)

The next step of the analysis is to identify, among the set of functions of Eq. (14), those which correspond to eigenvectors or
generalized eigenvectors of U2(χ,p).

For k ∈ f , Eq. (14) gives the generalized eigenvector
of U2(χ,p) corresponding to the continuous spectrum σc =
�++

f ∪ �+−
f . Since U2 − W2 is a finite rank operator, the

continuous spectrum of the two-particle interacting case is
the same as that of the free walk (see Theorem IV 5.35 of
Ref. [36]). From Eq. (14) we have that the solutions of the
kind f±,f

k are generalized eigenvectors of the free theory which
are also generalized eigenvectors of the interacting theory.
This is easily understood since f±,f

k (0) = 0 and therefore
those eigensolutions are not affected by the presence of the
interaction, which is localized at y = 0. On the other hand,
we can interpret the solution of the kind f±,i

k as a scattering
of plane waves with the T± playing the role of transmission
coefficients. We notice that a scattering process involves four
different values of the relative momentum between the two
particles, namely, k, −k, π − k, and k − π . This is in sharp
contrast to the scattering in the usual Thirring model in
continuous space-time, where relative momentum can be only
k or −k.

For k �∈ f , necessary conditions for f±
k to be a (proper

or generalized) eigenvector of U2(χ,p) are that kI = Im(k) <

0, c1 = 0, c2 �= 0, and T± = 0 (otherwise f±
k is exponentially

divergent). In Appendix B we prove the following result.
Lemma 2. Let T± be defined as in Eq. (14) and let us assume

p �= zπ
2 . If eiχ �∈ {e±i2p,1,−1}, then there exists a unique k ∈

0 ∪ −1 ∪ 1 ∪ 2 with kI < 0 such that either T+ = 0 or
T− = 0. On the other hand, if eiχ ∈ {e±i2p,1,−1} then T+ �= 0
and T− �= 0 for all k ∈ 0 ∪ −1 ∪ 1 ∪ 2 with kI < 0.

The above result tells us that, for eiχ �∈ {e±i2p,1,−1}, the
two-particle interacting evolution U2(χ,p) has one proper
eigenvector whose corresponding eigenvalue constitutes the
discrete spectrum of U2(χ,p). This eigenstate is easily inter-
preted as a bound state of two particles.

We now consider the functions given by Eq. (7) which lead
to the antisymmetric functions

f∞(y) =

⎧⎪⎨
⎪⎩

(ζ∞,0,0,ζ ′
∞)T δy,1, y > 0

(0,η∞,−η∞,0)T , y = 0

(−ζ∞,0,0,−ζ ′
∞)T δy,−1, y < 0.

(15)

Imposing the condition (6), we obtain the following solutions:

f±∞(y) =

⎧⎪⎨
⎪⎩

ie±ip
(− 1±1

2 ,0,0,−1±1
2

)T
δy,1, y > 0

(0,
μ

ν
,−μ

ν
,0)T , y = 0

ie±ip
(

1±1
2 ,0,0,−−1±1

2

)T
δy,−1, y < 0,

U2(χ,p)f±∞ = e±i2pf±∞ for eiχ = e±i2p. (16)

Equation (16) provides the proper eigenstate of U2(χ,p) for
the cases eiχ = e±i2p, which were missing in Lemma 2.

We can then write, for p �= zπ
2 , the spectral resolution of

U2(χ,p), i.e.,

U2(χ,p) =
∑

s = ±,

j = f,i

∫ π

−π

dk e−iω+s (p,k)
∣∣φs,j

p,χ (k)
〉〈
φs,j

p,χ (k)
∣∣

+ e−iω̃|ϕp,χ 〉〈ϕp,χ |,
where we defined〈

y
∣∣φs,j

p,χ (k)
〉

:= Np,χ,s,j,k f s,j

k (y),

〈y|ϕp,χ 〉 :=

⎧⎪⎨
⎪⎩

Mp,χ,k̃f+,i

k̃
(y), eiχ �= e±i2p, T+(k̃) = 0

Mp,χ,k̃f−,i

k̃
(y), eiχ �= e±i2p, T−(k̃) = 0

M±
p f±∞(y), eiχ = e±i2p,

ω̃ :=

⎧⎪⎨
⎪⎩

ω++(p,k̃), eiχ �= e±i2p, T+(k̃) = 0

ω+−(p,k̃), eiχ �= e±i2p, T−(k̃) = 0

±2p, eiχ = e±i2p,

and N and M are normalization factors such that〈
φs,j

p,χ (k)
∣∣φs ′,j ′

p,χ (k′)
〉 = δs,s ′δj,j ′δ(k − k′),

〈ϕp,χ |ϕp,χ 〉 = 1.

We conclude our analysis with the discussion of the cases
p = zπ

2 starting from p = 0. We have ω±±(0,k) = ±2ω(k),
with ω(k) ∈ (−π,π ] and ω(k) �= 0, if and only if k ∈ f ∪
0 ∪ 2. On the other hand, ω±∓(0,k) = 0 for all k ∈ C
and thus ω±∓(0,k) �= ω±±(0,k′) for all values of k and k′.
Therefore, the previous analysis still holds for e−iω �= 1 and,
by setting p = 0, the solutions f+

k of Eq. (14) are (proper
and improper) eigenvectors of U2(χ,0). Thus, the spectrum
of U2(χ,0) decomposes into a continuous spectrum, which is
the arc of the unit circle which contains −1 and has e±2iω(0)

as extremes, and a point spectrum made of two distinct points
e−i2ω(k̃) (where k̃ is the solution of T+ = 0 when p = 0) and 1.
Since U2(χ,0) is unitary, if e−iω belongs to the point spectrum
then it is a proper eigenvalue of U2(χ,0). Let us denote by P −

0
the projection on the eigenspace of the eigenvalue 1 and by P −

p

the projection

P s
p :=

∑
j=f,i

∫ π

−π

dk
∣∣φs,j

p,χ (k)
〉〈
φs,j

p,χ (k)
∣∣.

Now, since limp→0 ‖U2(χ,p) − U2(χ,0)‖ = 0 and 1 is a sep-
arate part of the spectrum of U2(χ,0), then limp→0 ‖P −

p −
P −

0 ‖ = 0 (see Theorem IV 3.16 of Ref. [36]). We have then
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that

P −
0 =

∑
n∈Z
j=f,i

|ψ−
0 (n,j )〉〈ψ−

0 (n,j )|,

|ψ−
0 (n,j )〉 :=

∫ π

−π

gn(k)|φ−,j

0,χ (k)〉,

where gn(k) is an orthonormal basis for L2(−π,π ]. The cases
p = π,±π

2 can be analyzed in the same way. The eigenspace
corresponding to the eigenvalue 1 is thus a separable Hilbert
space of stationary bound states. This result marks an important
departure from the behavior of analogous Hamiltonian models.
Remarkably, it occurs even in the noninteracting case χ = 0.

The diagonalization of U2(χ,p) is summarized by the
following proposition.

Proposition 1. Let U2(χ,p) be defined as in Eq. (5). Then
its spectral resolution is

U2(χ,p)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
s=±,

j=f,i

U s,j
p,χ + e−iω̃Pp,χ , p �= z

π

2

∑
j=f,i

U+,j
zπ,χ + P −

zπ + e−iω̃Pzπ,χ , p = 0,π,

∑
j=f,i

U
−,j

±π/2,χ − P +
±π/2 + e−iω̃P±π/2,χ , p = ±π

2
,

Us,j
p,χ :=

∫ π

−π

dk e−iω+s (p,k)
∣∣φs,j

p,χ (k)
〉〈
φs,j

p,χ (k)
∣∣,

Pp,χ = |ϕp,χ 〉〈ϕp,χ |.
In Fig. 2 we plot the spectrum of U2(χ,p) as a function of

p for different values of χ .
We introduced a fermionic quantum cellular automaton with

a number-preserving on-site interaction. The model, which
we named Thirring quantum cellular automaton, is given by
the product of a free evolution, which in a suitable limit
recovers the Dirac equation, and an interacting term. We
analytically diagonalized the two-particle sector. Differently
from analogous Hamiltonian models, (i) bound states exist for

FIG. 2. Spectrum of the two-particle automaton of Eq. (4): The
continuous spectrum bands are depicted in red (inner band) and yellow
(outer band); depicted in black is the discrete band for different values
of the coupling: χ1 = − π

5 , χ2 = − π

2 , χ3 = − 4π

5 , χ4 = 4π

5 , χ5 = π

2 ,
and χ6 = π

5 .

every value of the total momentum, (ii) there are four classes
of scattering solutions instead of two, and (iii) the bound states
exist also in the free case.

Another striking consequence of our result is that the
Thirring model in the continuum cannot be straightforwardly
recovered from the Thirring quantum cellular automaton.
This is in sharp contrast to the free case, in which the
low-momentum limit of the quantum automaton recovers
the Dirac equation in the continuum. When interactions are
turned on, the discreteness of the time evolution introduces
physical phenomena that are prevented in the continuous-time
counterpart. For example, a scattering process in which the
relative momentum changes from k to π − k is possible within
the Thirring quantum cellular automaton evolution but cannot
be recovered within the framework of the usual Thirring model
in continuous space-time.

Finally, because of the distinctive features of the two particle
dynamics, the usual Bethe ansatz solution does not apply and
the problem of finding a general solution for the N -particle
case is an open line of research.
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APPENDIX A: PROOF OF LEMMA 1

1. Proof of item (a)

Let us define ω̂± + iω̃± := ω(p ± k). Since ω(z∗) = ω∗(z),
we have that both ω̂± and ω̃± are real. Then we have

Im[ωrs(p,k)] = 0 ⇐⇒ rω̃+ = −sω̃−
⇒ cosh ω̃+ = cosh ω̃− =: cosh ω̃. (A1)

Recalling that cos ω(p ± k) = ν cos(p ± k), Eq. (A1) implies
that

cos2 ω̂± cosh2 ω̃ = ν2 cos2(p ± kR) cosh2 kI ,

sin2 ω̂± sinh2 ω̃ = ν2 sin2(p ± kR) sinh2 kI . (A2)

From the above relations we find that

cos2(p ± kR)
cosh2 kI

cosh2 ω̃
+ sin2(p ± k)

sinh2 kI

sinh2 ω̃
= 1

ν2
, (A3)

which gives

[sin2(p + kR) − sin2(p − kR)]

(
sinh2 kI

sinh2 ω̃
− cosh2 kI

cosh2 ω̃

)
= 0.

Now, since sinh2 kI

sinh2 ω̃
− cosh2 kI

cosh2 ω̃
= 0 implies sinh2 kI

sinh2 ω̃
= cosh2 kI

cosh2 ω̃
= 1,

which is not compatible with Eq. (A3), it must be sin2(p +
kR) = sin2(p − kR), which gives

kR = z

2
π ∨ p = z

2
π, z ∈ Z.
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By explicit computation one obtains

Im[ω±±(p,k)] = 0 ∧ kI �= 0 ⇒ kR = 0, π ∨ p = ±π

2

Im[ω±∓(p,k)] = 0 ∧ kI �= 0 ⇒ kR = ±π

2
, ∨ p = 0,π,

which proves the first item of Lemma 1.

2. Proof of item (b)

Let us consider the case in which p ∈ (0, π
2 ). The function

k �→ ω++(p,k) is smooth and periodic with period 2π and
therefore it ranges between its maximum and minimal values.
The maximum and minimum values are found by setting
∂kω++(p,k) = 0. By explicit computation one obtains

sin(p + k)√
1 − ν2 cos2(p + k)

= sin(p − k)√
1 − ν2 cos2(p − k)

,

which implies, for p �= zπ
2 , that k = 0,π . We have then that

ω++(p,k) ranges between 2ω(p) and 2π − 2ω(p). By noting
thatω++(p,π

2 ) = π we have that�++
f is the arc which connects

ei2ω(p) and e−i2ω(p) and which includes −1 (see Fig. 1). With
the same procedure we find that �+−

f is the arc connecting
ei[2ω(p+π/2)−π] and e−i[2ω(p+π/2)−π] which includes 1 (see
Fig. 1). We now verify that �++

f and �+−
f are disjoint. Since

ω(p) < π
2 and ω(p + π

2 ) > π
2 we have e−iω ∈ �++

f if and only
if ω mod 2π ∈ (−π,−2ω(p)] ∪ [2ω(p),π ] and e−iω ∈ �+−

f

if and only ifω mod 2π ∈ [π − 2ω(p + π
2 ),2ω(p + π

2 ) − π ].
Then, from the inequality | d

dx
ω(x)| < 1 ∀x ∈ R we have

ω
(
p + π

2

)
− ω(p) =

∫ p+π/2

p

dx
d

dx
ω(x) <

∫ p+π/2

p

dx <
π

2
,

which implies that the sets (−π,−2ω(p)] ∪ [2ω(p),π ] and
[π − 2ω(p + π

2 ),2ω(p + π
2 ) − π ] are disjoint.

Let us now consider the set �++
0 . For π �= 0,π , the

function R � kI �→ ω++(p,ikI ) = ω(p + ikI ) + ω(p − ikI )
is smooth. Therefore, the extremal points of its range occur
either in its stationary points or at its limiting values for
kI → ±∞. By setting ∂kI

ω++(p,ikI ) = 0 we obtain

sin(p + ikI )√
1 − ν2 cos2(p + ikI )

= sin(p − ikI )√
1 − ν2 cos2(p − ikI )

⇒ sin2(p + ikI ) = sin2(p − ikI )

⇒ sin(p + ikI ) = ± sin(p − ikI ) ⇒ kI = 0,

where we used the hypothesis p �= zπ
2 . When kI = 0

we clearly have ω++(p,0) = 2ω(p). Let us now compute
limkI →+∞ ω++(p,ikI ). Since ω++(p,ikI ) is an even function
of kI the limits kI → +∞ and kI → −∞ coincide. We have

ω++(p,ikI ) = ω(p + ikI ) + ω(p − ikI )

= 2Re ω(p + ikI ) = 2Re arccos[ν cos(p + ikI )]

= 2Re arccos(ν cos p cosh kI − i sin p cosh kI )

= 2 arccos 2−1[
√

(1 + cos p cosh kI )2 + sin2 p cosh2 kI

−
√

(1 − cos p cosh kI )2 + sin2 p cosh2 kI ]

kI →+∞−−−−→ 2 arccos cos p = 2|p|.

Since we are assuming p ∈ (0, π
2 ) we have that

d

dp
[ω(p) − p] = d

dp
ω(p) − 1 < 0,

ω(0) > 0, ω
(π

2

)
= π

2
,

which imply ω(p) − p > 0 for p ∈ (0, π
2 ). Similarly, one can

show ω(p + π
2 ) − π

2 < p for p ∈ (0, π
2 ). From ω(p + π

2 ) −
π
2 < p < ω(p) we have that e−iω ∈ �++

0 if and only if ω

mod 2π ∈ (−2ω(p),−2p). Moreover, we have that e−iω ∈
�++

2 if and only if eiω ∈ �++
0 if and only if ω mod 2π ∈

(2p,2ω(p)). This proves that, for p ∈ (0, π
2 ), �++

0 , �++
f , �+−

f ,
and �++

2 are disjoint sets (see Fig. 1). Following the same
derivation it is easy to show that e−iω ∈ �+−

1 if and only if
ω mod 2π ∈ (−2p,π − 2ω(p + π

2 )) and e−iω ∈ �+−
−1 if and

only if ω mod 2π ∈ (2ω(p + π
2 ) − π,2p), which proves item

(b) of Lemma 1 for p ∈ (0, π
2 ) (see Fig. 1). The same line

of derivation can be followed for the cases p ∈ (−π
2 ,0), p ∈

( π
2 ,π ), and p ∈ (−π,−π

2 ), thus completing the proof.

3. Proof of item (c)

Let us consider a value e−iω �= e±i2p. From
item (b) of Lemma 1 we have that the sets
�++

f ,�+−
f ,�++

0 ,�++
2 ,�+−

−1 ,�+−
1 cover the whole unit

circle except the points e±i2p and therefore e−iω must
belong to one of those sets. We prove the thesis for the case
e−iω ∈ �++

f and the remaining cases can be proved in the
same way. If e−iω ∈ �++

f , then there exists k ∈ f such that
ω++(p,k) = ω mod 2π . By direct computation one can verify
that also ω++(p,−k) = ω−−(p,k − π ) = ω−−(p,π − k)
mod 2π = ω. In order to prove that these are the only
admissible solutions we must check that k′ �= ±k implies
ω++(p,k′) �= ω mod 2π . By contradiction let us suppose that
there exists k′ �= ±k such that ω++(p,k′) = ω mod 2π . This
clearly implies ω++(p,k′) = ω++(p,k′) since the range of ω++
is smaller than 2π . Let us consider the case 0 < k′ < k. Since
ω++ is smooth, there must exist k′′ such that k′ < k′′ < k and
[ d
dk

ω++](p,k′) = 0. By direct computation one proves that this
is impossible. The generalization to the cases −k < k′ < 0,
k < k′ < π , and −π < k′ < k is straightforward. The analysis
of the cases k′ = 0,π is easily done by direct computation.

APPENDIX B: PROOF OF LEMMA 2

In order to prove the lemma it is convenient to introduce the
following function from the negative half line kI ∈ (−∞,0] to
the unit circle S1:

Gz : R− → S1, Gz(kI ) = −Az(p,k)

A∗
z (p,k)

, j = 0,2,±1

A0(p,k) = sin[ω(p − ikI )] + ν sin(p − ikI ),

A2(p,k) = sin[ω(p − ikI )] − ν sin(p − ikI ),

A±1(p,k) = sin

(
ω

(
p ∓ π

2
− ikI

))
+ ν sin

(
p ∓ π

2
− ikI

)
.
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The above function allows us to study the constraint
T±(p,k,χ ) = 0 through the following five properties: (i)

k ∈ 0 : T+(p,k,χ ) = 0 ⇐⇒ G0(kI ) = eiχ ,

k ∈ 2 : T+(p,k,χ ) = 0 ⇐⇒ G2(kI ) = eiχ ,

k ∈ ±1 : T−(p,k,χ ) = 0 ⇐⇒ G±1(kI ) = eiχ ;

(ii)

G0(0) = G2(0) = −1, G±1(0) = 1;

(iii)

G0(kI ) �= 1, G2(kI ) �= 1, G±1(kI ) �= −1 ∀kI ;

(iv)

d

dkI

Gz(kI ) �= 0 ∀kI , z = 0,2,±1;

and (v)

lim
kI →−∞

G0(kI ) = ei2|p|,

lim
kI →−∞

G2(kI ) = e−i2|p|,

lim
kI →−∞

G±1(kI ) =
{

e±i2p, p ∈ (−π
2 , π

2

)
e∓i2p, p ∈ (−π,−π

2

) ∪ (
π
2 ,π

)
.

The statement of the lemma is now proved, noticing that the
functions Gz(kI ), z = 0,2,±1, from the negative half line kI ∈
(−∞,0] to the unit circle S1, are injective and their ranges are
the range of G0, the smallest arc having −1 and ei2|p| as its
extremal points; the range of G2, the smallest arc having −1
and e−i2|p| as its extremal points; and the range of G±1, the
smallest arc having 1 and (depending on the value of p) e±i2|p|
as its extremal points.

Here we provide the proofs of items (i)–(v) for the case
k ∈ 0. The proof for the other three cases k ∈ 2 and k ∈ ±1

is almost identical.

1. Proof of item (i) for k ∈ �0

If k ∈ 0, k = ikI , and starting from the definition of
Eq. (14) we can rewrite T+(p,k,χ ) as

T+ = A∗
0(p,k) + e−iχA0(p,k)

e−iχA∗
0(p,k) + A0(p,k)

.

Let us replace A0(p,k) with A and T+(p,k,χ ) with T+ in order
to simplify the notation. We have that T+ = 0 ⇐⇒ A∗ +
e−iχA = 0 ∧ e−iχA∗ + A �= 0. First we observe that A �=
0 and indeed A = 0 ⇐⇒ sin[ω(p − ik)] = −n sin(p −
ik) ⇒ sin2[ω(p − ik)] = n2 sin2(p − ik) ⇒ ν2 = 1, which is
not an admissible value. Accordingly, a straightforward
computation shows that T+ = 0 ⇐⇒ A∗ + e−iχA = 0 ∧
e−iχA∗ + A = 0 if and only if χ = mπ (m ∈ Z). However,
T+(p,k,mπ ) = (−1)m �= 0 and we conclude that T+ = 0 if and
only if A∗ + e−iχA = 0, which proves item (i).

2. Proof of item (ii) for k ∈ �0

Notice that G0(kI ) = −1 ⇒ A = A∗, which implies
Im[A] = 0 ⇒ Im[A2] = 0 [where we replaced A0(p,k) with
A in order to simplify the notation]. Since we have A2 = 1 −

ν2 + 2ν sin(p − ikI )A the condition Im[A] = 0 ∧ Im[A2] =
0 implies Im sin(p − ikI ) = 0, that is, cos(p) sinh(kI ) = 0,
and then kI = 0 ∨ p = π

2 + mπ (m ∈ Z), which proves item
(ii).

3. Proof of item (iii) for k ∈ �0

We have G0(kI ) = 1 ⇒ A = −A∗, which implies Re[A] =
0 ⇒ Im[A2] = 0 [where we replaced A0(p,k) with A

in order to simplify the notation]. Since A2 = 1 − ν2 +
2ν sin(p − ikI )A the condition Re[A] = 0 ∧ Im[A2] = 0 im-
plies Re sin(p − ikI ) = 0, that is, sin(p) cosh(kI ) = 0. Since
the last equality is satisfied only for p = mπ (m ∈ Z), which
are not admissible values of p, item (iii) is proved.

4. Proof of item (iv) for k ∈ �0

We prove that d
dkI

G0(kI ) = 0 ⇒ p = mπ
2 (m ∈ Z), which

are not admissible values of p. Again we replace A0(p,k) with
A in order to simplify the notation. Consider

d

dkI

G0(kI ) = A′A∗ − AA′∗

(A∗)2
,

where A′ = ∂kI
A and A∗′ := ∂kI

A∗ = A′∗. Then, recalling that
A �= 0 [see the proof of item (i)] and noting that

A′A∗ − AA′∗ = −i|1 + ω′
−|2 sin(ω− + ω+),

ω± := ω(p ± ik), ω′(x) := d

dx
ω(x)

(this can be verified by rewriting A as A = sin[ω(p − ik)][1 +
ω′(p − ik)]), one has

d

dkI

G0(kI ) = 0 ⇐⇒ 1 + ω′
− = 0 ∨ sin(ω− + ω+) = 0.

Let us investigate the two possible cases. In the first case 1 +
ω′

− = 0 it must be

ω′
−

2 = ν2 sin2(p − ikI )

sin2[ω(p − ikI )]
= 1 ⇒ ν = 1,

which is not admissible. Let us now consider the case
sin(ω− + ω+) = 0, that is, ω− + ω+ = mπ . We have for m

even cos ω− = cos ω+ ⇒ sin p = 0 ∨ kI = 0. On the other
hand, if m is odd we have cos ω− = − cos ω+ ⇒ cos p = 0.
Item (iv) is thus proved.

5. Proof of item (v) for k ∈ �0

For convenience in the following we replace A0(p,k) with
A. First we rewrite the function G0 as

G0(kI ) = − Z

Z∗ ,

Z := −iA = e−iω(p−ikI ) − νei(p−ikI ).

Recalling that in this case k ∈ 0, k = kR + ikI with kR = 0,
from Appendix C we have the expressions of e−iω(p−ikI ) for
kI → −∞,

p > 0 ⇒ e−iω(p−ikI ) = 1

ν
e−ipekI ,

p < 0 ⇒ e−iω(p−ikI ) = νeipe−kI − μ2

ν
e−ipekI ,

from which item (v) follows.
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APPENDIX C: ASYMPTOTIC BEHAVIOR OF
THE WALK EIGENVALUES

The one-particle Dirac walk in momentum space is defined
through the matrix valued function of Eq. (2). Since U (p) ∈
SU(2), its eigenvalues are e−iω(p) and eiω(p), where ω(p) is the
solution of the equation cos ω = ν cos p with positive value.
Then we write

ω : (−π,π ] → [0,π ], p �→ ω(p) = arccos(ν cos p) � 0.

For our purposes it is convenient to consider the analytic
continuation of U (p) to the subset S := {p ∈ C | Re(p) =
pR ∈ (−π,π ],Im(p) = pI � 0} of the complex plane. The
eigenvalues of U (p), with p ∈ S , are e−iω(p) and eiω(p), where
now ω(p) = arccos(ν cos p), with arccos denoting the princi-
pal value of the multivalued analytic function arccos. We note
that arg(eiω(p)) = Re[ω(p)] = Re[arccos(ν cos p)] ∈ [0,π ].

In the two-particles case we introduced the center-of-mass
coordinates p and k, representing, respectively, the total and
the relative momentum. While p is always real, k can have an
imaginary part. Let us study the eigenvalues of U (p − k) in

the limit kI → −∞. We have

U (p−k)=νei(p−kR )e−kI

(
e2kI −i

μ

ν
e−i(p−kR )ekI

−i
μ

ν
e−i(p−kR )ekI e−i2(p−kR )

)
,

and denoting by λ′
1 and λ′

2 the two eigenvalues of
ν−1e−i(p−kR )ekI D(p − k) we have, for kI → −∞,

λ′
1 = 1 − μ2

ν2
e−2i(p−kR )e2kI , λ′

2 = 1

ν2
e−2i(p−kR )e2kI .

Accordingly, for kI → −∞, the eigenvalues λ1 and λ2 of
D(p − k) are

λ1 = νei(p−kR )e−kI − μ2

ν
e−i(p−kR )ekI ,

λ2 = 1

ν
e−i(p−kR )ekI ,

and noting that limkI →−∞ arg(λ1) = p − kR and
limkI →−∞ arg(λ2) = −(p − kR) we get

p − kR > 0 ⇒ e−iω(p−k) = λ2, eiω(p−k) = λ1

p − kR < 0 ⇒ e−iω(p−k) = λ1, eiω(p−k) = λ2.
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