
JOURNAL OF MATHEMATICAL PHYSICS 52, 082202 (2011)

Extremal quantum protocols
Giacomo Mauro D’Ariano,1 Paolo Perinotti,2,a) and Michal Sedlák2,3
1QUIT group, Dipartimento di Fisica “A. Volta”, and INFN Sezione di Pavia, via Bassi 6,
27100 Pavia, Italy
2QUIT group, Dipartimento di Fisica “A. Volta”, via Bassi 6, 27100 Pavia, Italy
3Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava,
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Generalized quantum instruments correspond to measurements where the input and
output are either states or more generally quantum circuits. These measurements
describe any quantum protocol including games, communications, and algorithms.
The set of generalized quantum instruments with a given input and output structure
is a convex set. Here, we investigate the extremal points of this set for the case of
finite dimensional quantum systems and generalized instruments with finitely many
outcomes. We derive algebraic necessary and sufficient conditions for extremality.
C© 2011 American Institute of Physics. [doi:10.1063/1.3610676]

I. INTRODUCTION

Experiments in quantum theory can be modeled through quantum networks that provide the
natural description of an arbitrary quantum procedure, corresponding to a causal sequence of steps.
The most basic building blocks of quantum networks are state preparations, state transformations
(channels and state reductions) and measurements. Provided we have a quantum network, we
can isolate open sub-circuits, whose connections constitute the whole network. Any optimization
problem in quantum theory can be seen as the search for the most suitable sub-circuit for a specified
purpose. For example, for discrimination of states we need to optimize a measurement, or for
discrimination of channels we need to optimize the network into which the channel is inserted. Open
sub-circuits provide a representation for the most general quantum protocol, where the gates represent
the sequence of operations performed by the agent that is communicating, computing or applying
a strategy for a quantum game. From a more abstract point of view any sub-circuit represents the
most general input-output map that can be achieved via a quantum circuit, that is called generalized
quantum instrument (GQI).1 GQIs then provide the mathematical description for any quantum
protocol including games, communications, and algorithms. It is possible to uniquely associate2 a
positive operator to any deterministic GQI—corresponding to a sub-circuit that does not provide
outcomes—in the same way as a positive operator is associated to any channel through the Choi-
Jamiołkowski correspondence. More generally, it is possible to associate a set of positive operators
to any GQI (Ref. 3) in such a way that each operator corresponds to a possible measurement outcome
and summarizes the probabilistic input-output behavior of the GQI as a sub-circuit, conditionally on
the outcome. The advantage of this description comes from neglecting the implementation details
that are irrelevant for the input-output behavior of the GQI within a quantum network, like arbitrary
transformations on ancillary systems, etc. The set of GQIs with the same input and output types
is convex, since a random choice of two different GQIs provides a convex combination of the
corresponding two input-output maps. It is thus clear that the description of quantum maps through
GQIs1 in optimization problems is convenient for two reasons. The first one is that this approach gets
rid of many irrelevant parameters, and the second one is that the optimization problems are reduced to
convex optimization on suitably defined convex sets. Applications of GQIs in optimization problems
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can be found in Refs. 4–11. The theory of GQIs was alternatively introduced1 as a theory of higher
order quantum functions, spawning interest in the investigation of more computational consequences
of the properties of GQIs.12–14 A similar approach to general affine functions on convex subsets of
state spaces was recently published,15 explicitly inspired to the concept of GQIs and quantum combs
(namely singleton GQIs).

As a special case of GQIs, we have the elementary examples of states, channels, and positive
operator valued measures (POVMs). The analysis of the extremality conditions for states is trivial,
and can be found in any textbook of quantum theory. Algebraic extremality conditions for channels
were provided in Ref. 16, while the conditions for POVMs were derived later in Refs. 17–21.
Other special cases of GQIs are quantum combs,2 corresponding to deterministic GQIs, or quantum
testers,1, 3 which are GQIs with outputs that are probability distributions. While all GQIs could
be decomposed into states, channels, and measurements, it is much more practical to consider the
corresponding networks as a whole.

Optimization tasks in quantum information processing can be rephrased in terms of optimization
of a certain GQI with respect to some particular figure of merit, which is often a convex function on
the set of GQIs and the maximum is achieved on an extremal point of this set. Moreover, also for
those problems that resort to convex optimization or minimax problems, numerical optimization is
enhanced by the possibility of generating arbitrary extremal elements. For this purpose, having an
algebraic characterization is a crucial step.

In the present paper, we consider the convex sets of GQIs, and characterize their extremal points
for the case of finite dimensional quantum systems and the instruments that have finitely many
outcomes. As special cases we obtain the extremality conditions for POVMs, channels,testers or
instruments.

The paper is organized as follows. In Sec. II, we introduce the theoretical framework we use
to describe quantum networks. In Sec. III, we formulate the necessary and sufficient condition of
extremality for GQI . Sections IV, V, and VI study the implications of the extremality condition in
the case of quantum testers, quantum channels, and quantum instruments, respectively. Finally, the
summary of the results is placed in Sec. VII.

II. THEORY OF QUANTUM NETWORKS

Let us summarize some pieces of the theoretical framework of quantum networks introduced in
Ref. 1 that we will use. An arbitrary quantum network R can be formally understood as a quantum
memory channel,2 whose inputs and outputs are labeled by even or odd numbers from 0 to 2N − 1,
respectively. The Hilbert spaces associated with these inputs and outputs can be in general different
and we denote them by Hi i = 0, . . . , 2N − 1. As it was shown already in Ref. 2, deterministic
quantum network R is fully characterized by its Choi-Jamiolkowski operator, i.e., a deterministic
quantum N -comb R.

Definition 1: A deterministic quantum N-comb on H0, . . . ,H2N−1 is a positive operator R ≡
R(N ) ∈ L(H0 ⊗ · · · ⊗ H2N−1), which obeys the following normalization conditions:

Tr2n−1 R(n) = I2n−2 ⊗ R(n−1), 0 ! n ! N ,

Tr1 R(1) = I0, (1)

where the operators R(n) are defined recursively.

Positive operators T ∈ L(H0 ⊗ · · · ⊗ H2N−1), such that T ! R for some deterministic quan-
tum comb R, are called non-deterministic quantum N -combs. An arbitrary probabilistic quantum
network, whose different outcomes are indexed by i = 1, . . . , M is described by a collection of
non-deterministic quantum N -combs {Ti }M

i=1 defined as follows:
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FIG. 1. The circuit implementation of a general GQI shows that GQIs correspond to the most general quantum network,1 and
vice versa one can prove that any quantum circuit possibly involving measurements corresponds to a GQI. The transformations
Vi are isometries, and Mi denotes a POVM. Notice that the measurement can always be postponed to the very last step.

Definition 2: Generalized quantum N-instrument is a collection {Ti }M
i=1 of non-deterministic

quantum N-combs that sum up to a deterministic quantum comb,

M∑

i=1

Ti = R. (2)

A realization theorem can be proved,1 providing the interpretation of GQIs as the appropriate
mathematical representation for the most general quantum network, because any GQI can be imple-
mented through a quantum circuit as in Fig. 1, and vice versa any quantum circuit possibly involving
measurements corresponds to a GQI.

For M = 1 the corresponding network is deterministic and the set of generalized quantum
instruments coincides with deterministic quantum combs. On the other hand, if N = 1 a generalized
quantum instrument is a collection of completely positive maps forming a channel, which is usually
called an instrument. Another special case of generalized quantum instruments is provided by
quantum testers.

Definition 3: A quantum N-tester is a generalized quantum (N + 1)-instrument on
H0, . . . ,H2N+1 with one-dimensional Hilbert spaces H0, H2N+1.

Quantum testers are analogous to the concept of positive operator valued measures (POVM) as
they allow to express probability distributions for arbitrary tests on quantum combs.

We will show our analysis of the extremal points of the set of generalized quantum instru-
ments, which provides necessary and sufficient conditions for extremality and leads to specific new
conditions also for all the above mentioned special cases.

III. EXTREMALITY CONDITION FOR GENERALIZED QUANTUM INSTRUMENTS

In this section, we shall apply the method of perturbations to find extremal generalized quantum
instruments. The perturbation method was also used to determine extremal channels16 and POVMs.19

However, the application of the perturbation method to GQIs does not come as a straightforward
generalization of previous results, because the richer structure of the normalization constraints for
GQIs requires a radically different analysis.

Let us consider arbitrary generalized quantum N -instrument {Ti }M
i=1. We denote by Vi the

support of the operator Ti . The support of the sum of positive operators is the span of the supports of
the summed operators. Thus, the support of the normalization R =

∑M
i=1 Ti is HR ≡ Span{Vi }M

i=1.
A set of operators {Di }M

i=1 is called a valid perturbation of GQI {Ti }M
i=1 if and only if {Ti ± Di }M

i=1 are
valid GQIs. Existence of a perturbation has two major implications. First, the positivity of Ti ± Di

requires Di to be hermitian and to have support only in Vi . This is proved by the following lemma.

Lemma 1: Suppose that operators T, D fulfill T " 0, D† = D. If T " ±D, then Supp(D) ⊆
Supp(T ).

Proof: The statement of the lemma can be equivalently formulated as Ker(T ) ⊆ Ker(D). This
can be proved considering the general decomposition of a vector |ψ〉 as α|#S〉 + β|#K 〉 where
#S ∈ Supp(T ) and #K ∈ Ker(T ). Then we have

|α|2〈#S|(T ± D)|#S〉 ± 2(α∗β〈#S|D|#K 〉 ± |β|2〈#K |D|#K 〉 " 0, (3)
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for all α, β. Choosing α = 0 one immediately obtains 〈#K |D|#K 〉 = 0, which by the polarization
identity implies also 〈# ′

K |D|#K 〉 = 0 for all # ′
K ∈ Ker(T ). The previous inequality can thus be

rewritten as follows

|α|2〈#S|(T ± D)|#S〉 ± 2(α∗β〈#S|D|#K 〉 " 0, (4)

for all α, β. Suitably choosing the phases of α, β, one has

|α|2〈#S|(T ± D)|#S〉 ∓ 2|α||β||〈#S|D|#K 〉| " 0, (5)

and for β = 1
2 and |α| > 0 we obtain

|α|〈#S|(T ± D)|#S〉 " |〈#S|D|#K 〉〉|, (6)

for all |α|, implying that 〈#S|D|#K 〉 = 0 holds for all #S and #K . This together with 〈# ′
K |D|#K 〉 =

0 ∀# ′
K ∈ Ker(T ) allows us to conclude that 〈ψ |D|#K 〉 = 0 for every ψ ∈ H, i.e., D|#K 〉 = 0 for

all #K . This proves that Ker(T ) ⊆ Ker(D), or, equivalently, Supp(D) ⊆ Supp(T ). #

As a consequence if we write operators Ti in their spectral form Ti =
∑

k λ
(i)
k |vi

k〉〈vi
k | then

arbitrary hermitian operator Di with support in Vi can be written as

Di =
∑

n,m

D(i)
nm |vi

n〉〈vi
m |, (7)

where D(i)
nm is a hermitian matrix with r2

i ≡ (dimVi )2 real parameters. We form a basis Hi ≡ {Q(i)
j }r2

i
j=1

of hermitian operators with support in Vi and we define DM :=
⋃M

i=1 Hi .
The second consequence of requiring valid perturbed GQI {Ti ± Di }M

i=1 is that, due to the
normalization condition (2) the perturbed GQI has to sum up to deterministic N -combs R±, which
can be stated as

M∑

i=1

Di = &, (8)

where & ≡ ±(R± − R) is an operator expressible as a difference of two deterministic quantum
N -combs. Using the parametrization of deterministic quantum combs developed in Appendix A it
is clear that & lies in WC , the subspace of operators spanned by the basis

D(N ) ≡ {E (2N−1)
i ⊗ F (2N−2)

j , I2N−1,2N−2 ⊗ E (2N−3)
i ⊗ F (2N−4)

j , . . . , I2N−1,...,2 ⊗ E (1)
i ⊗ F (0)

j }

where {E (k)
i }d2

k
i=2 is a basis of traceless hermitian operators on Hk , and {F (k)

j }d2
k ...d2

0
j=1 is basis of all

hermitian operators acting on Hk ⊗ Hk−1 ⊗ · · · ⊗ H0. On the other hand, due to the positivity
requirement for R± = R ± &, & must be a hermitian operator with support in HR . Let us call WS

the subspace of hermitian operators with support in HR . Thus, the allowed perturbations of the
normalization lie in the intersection WI ≡ WS ∩ WC . The relation between non-existence of a valid
perturbation and the requirements on the operators D1, . . . , DM ,& is expressed by the following
theorem.

Theorem 1: A generalized quantum N-instrument {Ti }M
i=1 acting on H2N−1 ⊗ · · · ⊗ H0 is

extremal if and only if DM ∪ D(N ) is an linearly independent set of operators.

Proof: We are going to prove the theorem by showing the equivalence of the negated statements,
i.e., a GQI is not extremal if and only if the basis DM ∪ D(N ) is linearly dependent. It is easy to
show that if a GQI is not extremal, then the basis DM ∪ D(N ) is linearly dependent. If a point of a
convex set is not extremal then there exists a bidirectional perturbation to it. Hence, there exists a
set of operators Di such that {Ti ± Di }M

i=1 is a valid GQI . In particular, due to at least one operator
Di being non-zero we have Eq. (8), which after expanding the LHS in DM and RHS in D(N ) proves
the linear dependence of basis DM ∪ D(N ).

In order to prove the converse statement we are going to show that if the basis DM ∪ D(N ) is
linearly dependent then there exists a valid perturbation of the considered GQI and hence it is not
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extremal. Linear dependence of DM ∪ D(N ) means there exists a non-zero vector consisting of all
coefficients D(i)

nm, sk such that
∑

i,n,m

D(i)
nm |vi

n〉〈vi
m | +

∑

k

sk Gk = 0, (9)

where D(i)
nm are for each i hermitian matrices, |vi

n〉 are eigenvectors of Ti and Gk are basis elements
of D(N ). Let us recall that the basis D(N ) is by construction linearly independent, so all D(i)

nm can not
be zero simultaneously. We rewrite the equation (9) as

∑

i,n,m

D(i)
nm |vi

n〉〈vi
m | =

∑

k

−sk Gk ≡ &. (10)

For each i the operators on the LHS of (10) have support in the subspace Vi . All subspaces
Vi are included in the support of the normalization R. Thus, the operator on the LHS of (10)
belongs to an operator subspace WS . Since the RHS of (10) is from subspace WC it is clear that∑

k sk Gk ∈ WS ∩ WC = WI . This implies that for suitably small ε the operator R ± ε& is positive
as well as all operators Ti ± εDi . Thus, we have found a valid perturbation of the GQI {Ti }M

i=1
showing that it is not extremal, which concludes the proof. #

IV. EXTREMALITY OF QUANTUM TESTERS

In this section, we focus our attention to quantum testers, which can be used to solve problems
like discrimination of quantum channels, or optimization of quantum oracle calling algorithms and
others, because they describe achievable probability distributions for all possible experiments with
given resources. More precisely, we consider quantum N -testers and we try to identify the extremal
points of this set. We start by the analysis of 1-testers, also called Process-POVMs.22 A 1-tester
with M outcomes is defined by positive operators {Ti }M

i=1 acting on H2 ⊗ H1, which satisfy the
normalization condition

M∑

i=1

Ti = I2 ⊗ ρ1, (11)

where ρ is a state on H1.23 As before we denote by Vi the supports of operators Ti . Let us denote
the support of ρ by Hρ and by r = dimHρ the rank of ρ. The 1-tester {Ti }M

i=1 on H2 ⊗ H1 can be
considered as a valid 1-tester on H2 ⊗ H′

1 for arbitrary H′
1 that includes Hρ (e.g., H′

1 = Hρ).

A. Extremality condition for 1-testers

In the following, we express the general extremality condition from Theorem 1 for 1-testers and
we propose a slightly different extremality condition, which is easier to check. The set D(N ) from

Theorem 1 is in this case formed by the operators {I2 ⊗ E (1)
i }d2

1
i=2, where {E (1)

i }d2
1

i=2 is a basis of trace
zero hermitian operators on H1.

Corollary 1: A quantum 1-tester {Ti }M
i=1 is extremal if and only if there exists only a trivial solution

of an equation
∑M

i=1

∑
n,m D(i)

nm |vi
n〉〈vi

m | +
∑d2

1 −1
j=1 s j I2 ⊗ E (1)

j = 0, where ∀i D(i)
nm are hermitian

matrices and s j are real numbers.

Since the normalization of the perturbed tester must be supported inside the support of the orig-
inal normalization, it is natural that, DI ≡ {I2 ⊗ σl}r2−1

l=1 , the basis of trace zero operators supported
under the original normalization I2 ⊗ ρ1 can be used in the Theorem 1 instead of D(N ).

Theorem 2: A quantum 1-tester {Ti }M
i=1 is extremal if and only if the equation

M∑

i=1

∑

n,m

D(i)
nm |vi

n〉〈vi
m | +

r2−1∑

l=1

sl I2 ⊗ σl = 0, (12)
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where D(i)
nm are for each i hermitian matrices and sl are real numbers, has only a trivial solution.

Actually, the basis DI of the subspace WI can be always used in the Theorem 1 and the proof
still holds. However, for N /= 1, 2 it is often easier to specify D(N ) rather than DI .

As we said for 1-testers DI is formed by trace zero operators supported under ρ tensored with
unity on H2 and this will help us to get more insight to 1-testers. The extremality condition for
1-tester {Ti }M

i=1 from Theorem 2 allows us to give the following bound

M∑

i=1

r2
i + r2 − 1 ! (rd2)2 (13)

on the ranks ri of the operators Ti . The bound is derived by counting the number of elements
of DM ∪ DI and realizing that these operators should be linearly independent hermitian operators
acting only on H2 ⊗ Hρ . From the bound (13) it is clear that the extremal tester can have the highest
possible number of outcomes if r = d1 and the ranks ri are as close to one as possible. Assuming
all ri are rank 1 we get the bound on the number of elements of the extremal quantum 1-tester

M ! d2
1 (d2

2 − 1) + 1, (14)

B. Classification of extremal 1-testers

Let us now answer the question, which normalizations I ⊗ ρ allow existence of extremal testers.
For this purpose let us define a superoperator ξρ,U that acts on linear operators on H2 ⊗ H1 as

ξρ,U (Ti ) ≡ d1(I ⊗ √
ρ U ) Ti (I ⊗ U †√ρ). (15)

For any state ρ with full rank (i.e., r = d1) and any unitary U acting on H1, the superoperator ξρ,U is
invertible and preserves positivity of operators. Using ξρ,U we can formulate the following theorem.

Theorem 3: Suppose we have a full rank state ρ, a unitary operator U and a 1-tester {Ti }M
i=1

on H2 ⊗ H1 with
∑M

i=1 Ti = I ⊗ 1
d1

I . Then the tester {T ′
i ≡ ξρ,U (Ti )}M

i=1 on H2 ⊗ H1 has normal-

ization
∑M

i=1 T ′
i = I ⊗ ρ and is extremal if and only if 1-tester {Ti }M

i=1 is extremal.

Proof: First, let us note that the form of ξρ,U guarantees positivity of T ′
i and leads to the

normalization
M∑

i=1

T ′
i = ξρ,U (I ⊗ 1

d1
I ) = I ⊗ ρ. (16)

Now we prove that the tester {T ′
i }M

i=1 is extremal if the original tester {Ti }M
i=1 was. Let us stress that

for any extremal 1-tester its normalization I ⊗ ρ is (up to multiplication) the only operator of the
form I ⊗ X that is in the span of the operators Di . This holds, because the span of the operators
Di ∈ L(Vi ) ⊆ L(H2 ⊗ Hρ) covers I ⊗ ρ and it is independent from r2 − 1 dimensional subspace
of traceless hermitian operators of the form I ⊗ X due to linear independence (12). Superoperator
ξρ,U is invertible so it preserves linear independence. In our case this means that the basis H′

i of
hermitian operators derived from ξρ,U (|vi

n〉〈vi
m |) is linearly independent and spans the whole space

of hermitian operators that have support in the support of T ′
i . Moreover, due to extremality of the

original tester {Ti }M
i=1 (

∑M
i=1 Ti = I ⊗ 1

d1
I ) and the invertibility of ξρ,U we can conclude that also

I ⊗ ρ = ξρ,U (I ⊗ 1
d1

I ) is the only operator of the form I ⊗ X that is in the span of D′
M = ∪M

i=1H′
i .

Let us assume that the tester {T ′
i }M

i=1 is not extremal even though the original tester {Ti }M
i=1 was

extremal. In other words we assume that D′
M is linearly dependent with traceless operators {I2 ⊗

σl}r2−1
l=1 . As a consequence there must exist a traceless operator of the form I ⊗ X in the span D′

i .
However, this is a contradiction, because the only operator of such form is I ⊗ ρ and has trace one.
We conclude that the transformed tester {T ′

i }M
i=1 must be extremal.
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In fact, the same argumentation can be used to prove that {Ti }M
i=1 is extremal if {T ′

i }M
i=1 was,

because ξρ,U is invertible. Hence, for arbitrary extremal tester {T ′
i }M

i=1 with normalization I ⊗ ρ

using (ξρ,U )−1 one obtains extremal tester {Ti }M
i=1 with normalization I ⊗ 1

d1
I . #

The Theorem 3 is very useful, because to classify all extremal 1-testers it suffices to classify
extremal 1-testers with normalization I ⊗ 1

d1
I . More precisely, using ξ−1

ρ,I each extremal tester is
in one to one correspondence with an extremal tester with normalization I ⊗ 1

r +ρ , where +ρ is
a projector onto a support of ρ. This tester can be considered as a tester on H2 ⊗ Hρ , where
its normalization is of the above mentioned form I ⊗ 1

d1
I . Thus, we can formulate the following

corollary of Theorem 3.

Corollary 2: Extremal 1-testers with M outcomes exist either for all normalizations I ⊗ ρ with
given rank r of ρ or for none of them.

Let us now relate the set ,(H2,H1) of extremal quantum testers with normalization I ⊗ 1
d1

I
to the set P(H2 ⊗ H1) of extremal POVMs on H2 ⊗ H1. Namely, each extremal tester {Ti }M

i=1 with
normalization I ⊗ 1

d1
I defines an extremal POVM {Ei = d1Ti }M

i=1. This follows directly from the
extremality condition for quantum testers (12), which necessarily requires the basis of hermitian
operators with supports on Vi to be linearly independent. This is exactly the necessary and sufficient
condition for the extremality of the POVM (Ref. 19) {Ei }M

i=1. Apart from the multiplicative difference
in normalization, we will prove later that extremal quantum testers with normalization I ⊗ 1

d1
I are

a proper subset of extremal POVMs on H2 ⊗ H1. On the other hand there are extremal POVMs on
H2 ⊗ H1, which cannot be rescaled to form an extremal tester. One example are informationally
complete POVMs on H2 ⊗ H1 with (d1d2)2 outcomes. Their existence was proved in Ref. 19 for
any dimension, but they have too many outcomes to form an extremal 1-tester (see Eq. (14)).

C. Extremal 1-testers with rank one normalization

Having a tester with rank one normalization ρ = |φ〉〈φ| implies that all the elements of the tester
have the form Ti = Ei ⊗ ρ, where Ei is positive operator acting on H2. Let us note that these testers
correspond to preparation of a pure state ρ and performing a POVM {ET

i }M
i=1. Since the support

of ρ is one-dimensional, there are no traceless operators with support in Hρ . Thus, the extremality
condition (12) is in this case equivalent to linear independence requirement

0 =
M∑

i=1

∑

n,m

D(i)
nm |wi

n〉|φ〉〈wi
m |〈φ| =

(
M∑

i=1

∑

n,m

D(i)
nm |wi

n〉〈wi
m |

)

⊗ |φ〉〈φ| ⇒ D(i)
nm = 0 ∀i, n, m

for the basis of hermitian operators on the supports of Ei . This is precisely the necessary and
sufficient condition of the extremality of the POVM (Ref. 19) with elements Ei . Thus, the
quantum tester {Ti = |φ〉〈φ| ⊗ Ei }M

i=1 is extremal if and only if POVM {Ei }M
i=1 is extremal. In

particular, the number of outcomes of the extremal quantum tester in this case cannot exceed
d2

2 , which is the number given by the bound (14) and by the maximal number of elements of
an extremal POVM (Ref. 19) as well. On the other hand, a single outcome extremal POVM
{E1 = I } leads to an extremal 1-tester {T1 = I ⊗ ρ} for arbitrary pure state normalization ρ.

Remark 1: Actually, the only extremal single outcome 1-testers are those with pure state
normalization.

D. Extremal qubit 1-testers

For qubit tester (d1 = d2 = 2) the rank r of the normalization ρ can be either one or two.
If ρ is a pure state (r = 1) then Sec. IV C tells us that such extremal testers are in one to one
correspondence with the extremal qubit POVMs, which can have at most four outcomes. Hence, to
classify all extremal qubit testers (based on Sec. IV B) it remains to investigate qubit testers with
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normalization ρ = I ⊗ 1
2 I . We will identify extremal testers with two outcomes. Then we discuss

the case 2 < k ! 13 (see bound (14)) and we propose some ways how to construct such testers.

1. Two outcome testers

Considering the ranks r1, r2 of the two parts of the tester, there are only three possibilities
compatible with bound (13): i) (r1, r2) = (1, 3), i i) (r1, r2) = (2, 2), i i i) (r1, r2) = (2, 3), where we
assume without loss of generality that r1 ! r2. As we already mentioned the supports of the tester
operators Ti necessarily have to obey conditions for extremal POVMs on H2 ⊗ H1. In particular,
operators Ti cannot have intersecting supports (see corollary 3 in Ref 19). This rules out (r1, r2) =
(2, 3) case.

Let us now consider the case i) (r1, r2) = (1, 3). In this case T1 necessarily equals 1
2 projector

onto a pure state, because otherwise the rank of T2 = 1
2 I ⊗ I − T1 would not be three. Consequently,

we can write the tester as

T1 = 1
2
|φ1〉〈φ1|, (17)

T2 = 1
2

(I ⊗ I − |φ1〉〈φ1|) = 1
2

4∑

i=2

|φi 〉〈φi |,

where vectors |φi 〉 i = 1, . . . , 4 form an orthonormal basis of H2 ⊗ H1. As we show in the
Appendix B 1, the only two-outcome testers of the above form that are not extremal are those
with |φ1〉 being a product state. Looking on how the considered type of testers transforms under
superoperator ξρ,I from equation (15) one can easily conclude that also for arbitrary rank two nor-
malization ρ the two outcome testers with (r1, r2) = (1, 3) are extremal if and only if |φ1〉 is not a
product state.

The case (i i) (r1, r2) = (2, 2) has some similarities to the previous one. Since T1, T2 are both
rank two and their sum is 1

2 I ⊗ I , then they both must be equal to 1
2 Pi , where Pi are orthogonal

projectors. Consequently, we can write the tester as

T1 = 1
2

P1 = 1
2

(|φ1〉〈φ1| + |φ2〉〈φ2|),

T2 = 1
2

P2 = 1
2

(|φ3〉〈φ3| + |φ4〉〈φ4|), (18)

where vectors |φi 〉 i = 1, . . . , 4 form an orthonormal basis of H2 ⊗ H1. As we show in the
Appendix B 2 this type of tester is not extremal only if P1 = I ⊗ |v〉〈v| for some |v〉 ∈ H1 or if the
states |φ1〉, |φ3〉 can be chosen as |φ1〉 = |w〉 ⊗ |v〉, |φ3〉 = |w⊥〉 ⊗ |v〉 for some states |w〉 ∈ H2,
|v〉 ∈ H1. For arbitrary rank two normalization ρ the conditions on extremality of this type of tester
are very similar, but with P1, P2 playing the role of projectors onto the support of T1, T2.

2. M-outcome testers

The analysis of extremal qubit testers for more than two outcomes is very involved. For this
reason, we provide only some examples how one can construct them. Extremal qubit 1-testers with
3 or 4 outcomes can be easily obtained by taking the extremal 2-outcome tester from Eq. (18)
and splitting either one or both its parts into rank one operators. Obviously this operation reduces
the subspace achievable by linear combination of operators with support on Ti , thus the linear
independence with the operators σi ⊗ I remains untouched and the tester obtained in this way is
extremal. A different approach allows us to generate examples of extremal testers with up to M ! 10
as follows. Let us consider an extremal 2-outcome tester from Eq. (17) and let us split its element
T2 into T ′

2, . . . , T ′
M in such a way that {2T ′

i }M
i=2 is an extremal POVM on the support of T2. By

setting T ′
1 = T1 we obtain an extremal tester {T ′

i }M
i=1, because we are only restricting the operator

span of allowed perturbations of the elements Ti and perturbations of T ′
2, . . . T ′

M are independent by
construction. Finally, one can use the technique of Heinossari and Pellonpää24 (see Proposition 4)
to construct extremal qubit 1-testers with 4 ! M ! 13 rank 1 elements. The construction generates
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M + 1 outcome tester from the M outcome tester until the linear independence of rank 1 elements
with the operators σi ⊗ I can be kept (i.e., M ! 13).

V. EXTREMALITY OF QUANTUM CHANNELS

The aim of this section is to show how our general criterion from Theorem 1 in the case
of channels (N = 1, M = 1) relates to known conditions of extremality. For channels mapping

from L(H0) to L(H1), we have D(N )= {σa ⊗ I, σa ⊗ σb}, where {σa}
d2

1
a=2, {σb}

d2
0

b=2 are basis of trace
zero hermitian operators on H1, H0, respectively. Suppose we want to test whether a channel E
with Choi-Jamiolkowski operator E is extremal. If we take the spectral decomposition of E =∑

m |Km〉〉〈〈Km | then the eigenvectors |Km〉〉 correspond through isomorphism25 |A〉〉 = A ⊗ I |I 〉〉
(here |I 〉〉 ≡

∑
i |i〉 ⊗ |i〉 ∈ H⊗2

0 ) to Kraus operators Km of a minimal Kraus representation of
channel E . The well-known Choi extremality condition16 writes

∑

m,n

αmn K †
m Kn = 0 ⇔ αmn = 0 ∀m, n. (19)

On the other hand, according to our Theorem 1 the condition for extremality of channel E is that
∑

m,n

αmn|Km〉〉〈〈Kn| +
∑

a

βaσa ⊗ I +
∑

a,b

γabσa ⊗ σb = 0,

⇔ αmn = 0, ∀m, n, βa = 0 ∀a, γab = 0 ∀a, b. (20)

We will now prove the following theorem:

Theorem 4: The conditions in Eq. (19) and Eq. (20) are equivalent.

Proof: In order to prove that the condition in Eq. (19) implies the condition in Eq. (20), it is
sufficient to suppose that Eq. (20) holds, and to take the partial trace on the Hilbert space H1. We
then get

rank E∑

m,n=1

αmn K T
m K ∗

n = 0,

which by condition Eq. (19) implies αmn = 0 for all m, n. Finally, by linear independence of {σa ⊗
I, σa ⊗ σb}, this also implies βa = 0 = γab for all a and b. Conversely, one can write |Km〉〉〈〈Kn| as

|Km〉〉〈〈Kn| = 1
d1

I1 ⊗ K T
m K ∗

n + &mn, (21)

where Tr1[&mn] = 0 for all m, n. This implies that &mn belongs to the span of D(N ) for all m, n. Let
us suppose that Choi’s condition Eq. (19) is not satisfied. Then there exist nontrivial coefficients ζmn

such that
∑

m,n ζm,n K T
m K ∗

n = 0. If we then take βa , γab such that
∑

mn

ζmn&mn =
∑

a

βaσa ⊗ I +
∑

ab

γabσa ⊗ σb, (22)

we have
∑

mn

ζmn|Km〉〉〈〈Kn| −
∑

a

βaσa ⊗ I −
∑

ab

γabσa ⊗ σb = 0, (23)

in contradiction with Eq. (20).

VI. EXTREMALITY OF QUANTUM INSTRUMENTS

In contrast to a channel (N = 1, M = 1), which is specified by its Choi-Jamiolkowski operator,
an instrument (N = 1, M " 1) is characterized by a collection of Choi-Jamiolkowski operators
{Ni }M

i=1 ⊆ L(H1 ⊗ H0), which sum up to Choi-Jamiolkowski operator of some channel R. The set
D(N ) = {σa ⊗ I, σa ⊗ σb} from Theorem 1 is the same as for channels, because it depends only
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on N , the number of teeth of GQI, but not on M the number of outcomes of the instrument.
We can take the spectral decompositions of all the Choi-Jamiolkowski operators of the instrument
Ni =

∑
m |K (i)

m 〉〉〈〈K (i)
m | and we can write the necessary and suffiecient condition of extremality as

follows.

Corollary 3: Instrument {Ni }M
i=1 ⊆ L(H1 ⊗ H0) is extremal if and only if equation

∑

i,m,n

αi
mn|K (i)

m 〉〉〈〈K (i)
n | +

∑

a

βaσa ⊗ I +
∑

a,b

γabσa ⊗ σb = 0 (24)

cannot be satisfied for non-trivial coefficients αi
mn, βa, γab.

Counting the terms in Eq. (24) that have to be linearly independent elements of L(H1 ⊗ H0),
we can obtain a simple restriction on the ranks of the elements of the extremal instrument.

Corollary 4: An extremal instrument {Ni }M
i=1 ⊆ L(H1 ⊗ H0) satisfies the following inequality

∑

i

r2
i ! (d0)2, (25)

where ri denotes the rank of Ni and d0 = dimH0.

We will now prove a theorem that provides an equivalent, but more practical, extremality
condition for quantum instruments.

Theorem 5: An instrument {Ni }M
i=1 with Choi-Jamiołkowski operators {Ni =∑

m |K (i)
m 〉〉〈〈K (i)

m |}M
i=1 is extremal if and only if the operators {K (i)†

m K (i)
n } are linearly independent.

Proof: Suppose that the operators {K (i)†
m K (i)

n } are linearly independent. Then if Eq. (24) is
satisfied, also its partial trace over space H1 is satisfied, namely

∑

i,m,n

αi
mn K (i)

m
T

K (i)
n

∗ = 0, (26)

which implies α(i)
mn = 0 for all i, m, n and consequently also βa = 0 for all a and γab = 0 for all a, b.

Conversely, consider the extremality condition in Eq. (24) along with the following generalization
of Eq. (21)

|K (i)
m 〉〉〈〈K (i)

n | = 1
d1

I1 ⊗ K (i)
m

T
K (i)

n
∗ + &(i)

mn, (27)

where the operators &(i)
mn belong to the span of D(N ). If the operators {K (i)†

m K (i)
n } are not linearly

independent, then there are non-trivial coefficients ζ (i)
mn such that

∑
i,m,n ζ (i)

mn K (i)
m

T K (i)
n

∗ = 0. Then,
taking βa and γab such that

∑

i,m,n

ζ (i)
mn&

(i)
mn =

∑

a

βaσa ⊗ I +
∑

ab

γabσa ⊗ σb, (28)

we have
∑

i,m,n

ζ (i)
mn|K (i)

m 〉〉〈〈K (i)
n | −

∑

a

βaσa ⊗ I −
∑

ab

γabσa ⊗ σb = 0, (29)

in contradiction with Eq. (24).

A. Extremality of Von Neuman-Lüders instruments

Let us now consider instruments of the following type

Ni (ρ) =
√

Piρ
√

Pi , (30)
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where Pi is a POVM. Then, by Theorem 5, the instrument is extremal if and only if the POVM
{Pi }M

i=1 is linearly independent. Indeed, the set {K (i)†
m K (i)

n } in this case is provided precisely by
{Pi }M

i=1.
In particular, von Neuman-Lüders instruments are extremal. Indeed, every such instrument

{Ni }d
i=1 is of the form of Eq. (30) with Pi = +i where +i+ j = δi j+i . Using the last constraint it is

easy to prove that if X =
∑

i αi+i = 0 then + j X = α j+ j = 0 and consequently α j = 0.
Since there exist POVMs that are not extremal, but have linearly independent elements, one can

easily construct examples of extremal instruments, with non-extremal POVMs. For example, this is
the case with d = 2 and P1 = 1/2|0〉〈0|, P2 = 1/2|0〉〈0| + |1〉〈1|.

VII. CONCLUSIONS

The aim of this paper was to characterize the extremal points of the set of GQIs. Our main
result is represented by Theorem 1, which links extremality of the considered GQI with linear
independence of a set of operators. An important special case of GQIs are Quantum testers. For
quantum 1-testers we derived necessary and sufficient criterion of extremality that differs from the
application of general Theorem 1 and can be tested more easily. As a consequence of the criterion,
we obtained a bound (13) on the ranks of elements of the extremal 1-tester. We showed that the
subsets of extremal 1-testers with a fixed normalization are isomorphic if they have the same rank
of the normalization. This implies that to classify all extremal 1-testers it suffices to study extremal
1-testers with a completely mixed normalization (I2 ⊗ ρ1 = 1

d1
I21). We completely characterized

qubit 1-testers with 1 and 2 outcomes and provided techniques to construct extremal qubit testers
with up to 13 outcomes, which is the maximal number allowed by the bound (14).

In Sec. V we apply our extremality condition from Theorem 1 to channels. The resulting
condition is different from the well known criterion of Choi,16 even though we prove it to be
equivalent. The Sec. VI presents the first characterization of the extremality of instruments. In
particular, we show that instruments of the type defined in Eq. (30) for POVMs {Pi }M

i=1 with linearly
independent elements are extremal quantum instruments.

More generally, any quantum instrument determines not only a POVM, when the quantum
output is ignored, but also a quantum channel, when the classical outcome is ignored. A natural
question is then what combinations of extremality can exist when we consider an instrument along
with the POVM and channel it defines. In Appendix C we present examples of instruments for seven
out of the eight possibilities. The question whether non-extremal instruments exist, such that they
determine extremal POVMs and extremal channels is left as an open problem.
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APPENDIX A: PARAMETRIZATION OF THE SET OF DETERMINISTIC QUANTUM COMBS

Suppose we want to choose such parametrization of the set of hermitian operators in which the
subset of deterministic quantum combs would simply correspond to positive operators that have some
parameters fixed (e.g., to zero). Let us consider a quantum N -combs R ∈ L(H2N−1 ⊗ . . . ⊗ H0).
For each of the Hilbert spaces Hk k ∈ {0, .., 2N − 1} we choose a basis of hermitian operators

on Hk {E (k)
a }d2

k
a=1 such that E (k)

1 = I and all the other elements have zero trace. Taking the tensor
product of the basis elements for all the Hilbert spaces Hk we obtain a basis of hermitian operators
{E (2N−1)

a2N−1
⊗ . . . ⊗ E (0)

a0
} on H2N−1 ⊗ . . . ⊗ H0.

Let us now use this basis to illustrate the normalization cascade requirements on the quantum
1-combs, i.e., Choi operators of quantum channels. In this case a quantum channel mapping from
L(H0) to L(H1) is represented via Choi-Jamiolkowski isomorphism by a positive operator R ∈
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L(H1 ⊗ H0), which has to fulfil equation Tr1 R = I0. Using our basis arbitrary R can be written as

R =
d2

1∑

a1=1

d2
0∑

a0=1

ca1a0 E (1)
a1

⊗ E (0)
a0

= c11 I1 ⊗ I0 + I1 ⊗
d2

1∑

a0=2

c1a0 E (0)
a0

+ (A1)

+
d2

1∑

a1=2

E (1)
a1

⊗
d2

0∑

a0=1

ca1a0 E (0)
a0

Let us now look how the three terms of the RHS of Eq. (A1) contribute to Tr1(R). The first two terms
do contribute, whereas the remaining one does not. The requirement of Tr1(R) = I0 translates into
the following equations c11 = 1

d1
, c1i = 0 ∀i = 2, . . . , d0 for parameters ca1a0 . Thus, each quantum

1-comb (Choi operator of a channel) can be written as

R = 1
d1

I10 +
∑

i

E (1)
i ⊗ Ai , (A2)

where Ai are arbitrary hermitian operators on H0. Previous statements can be easily generalized to
the case of general quantum combs. We shall first illustrate the relation of expansions for R(n) and
R(n−1) and then write the expansion of general quantum N -comb. In our basis R(n) can be written as

R(n) =
∑

a2n−1,a2n−2

E (2n−1)
a2n−1

⊗ E (2n−2)
a2n−2

⊗ La2n−1,a2n−2 ,

= I2n−1,2n−2 ⊗ L1,1 + I2n−1 ⊗
d2

2n−2∑

j=2

E (2n−2)
j ⊗ L1, j

+
d2

2n−1∑

i=2

E (2n−1)
i ⊗

d2
2n−2∑

j=1

E (2n−2)
j ⊗ Li, j (A3)

where

La2n−1,a2n−2 =
∑

a2n−3···a0

ca2n−1···a0 E (2n−3)
a2n−3

⊗ · · · ⊗ E (0)
a0

and we expanded the two sums in the same way as in (A1). The normalization cascade (1) requires26

that

L1,1 = 1
d2n−1

R(n−1) , L1, j = 0 ∀ j (A4)

and the operator
∑d2

2n−2
j=1 E (2n−2)

j ⊗ Li, j can be an arbitrary operator on H2n−2 ⊗ · · · ⊗ H0. As a result

R(n) = 1
d2n−1

I2n−1,2n−2 ⊗ R(n−1) +
d2

2n−1∑

i=2

E (2n−1)
i ⊗ Bi , (A5)
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where Bi ∈ L(H2n−2 ⊗ · · · ⊗ H0). Using the above relation recursively we can write the
parametrization of the general deterministic N -comb as

R(N ) = 1
d2N−1d2N−3 . . . d1

I2N−1,...,0

+
∑

i=2

E (2N−1)
i ⊗ B(2N−2)

i

+I2N−1,2N−2 ⊗
∑

i=2

E (2N−3)
i ⊗ B(2N−4)

i + . . .

+I2N−1,...,2 ⊗
∑

i=2

E (1)
i ⊗ B(0)

i , (A6)

where B(k)
i are arbitrary hermitian operators acting on Hk ⊗ Hk−1 ⊗ · · · ⊗ H0. Let us denote the

basis for hermitian operators B(k)
i as {F (k)

j }d2
k ...d2

0
j=1 . Consequently, the basis used for the variable part

(i.e., all terms in (A6) except the first) of the quantum comb is {E (2N−1)
i ⊗ F (2N−2)

j , I2N−1,2N−2 ⊗
E (2N−3)

i ⊗ F (2N−4)
j , . . . , I2N−1,...,2 ⊗ E (1)

i ⊗ F (0)
j } and we denote it as D(N ). The operator basis R(N )

sufficient to expand arbitrary deterministic comb is then formed by {I2N−1,...,0} ∪ D(N ).

APPENDIX B: TWO OUTCOME QUBIT 1-TESTERS

Suppose we have a two-outcome qubit 1-tester {Ti = 1
2 Pi }2

i=1 with normalization I2 ⊗ 1
2 I1 and

Pi being orthogonal projectors. Equivalently to Theorem 2 we can say that the two outcome 1-tester
is extremal if and only if Vσ ∩ VT = 0, where Vσ = Span{I ⊗ σk}k=x,y,z and VT is the direct sum
of the two subspaces of hermitian operators with support in P1 and in P2, respectively. The non
existence of the intersection of Vσ and VT can be stated also as the impossibility to fulfill the
following equation

4∑

i=1

λi |φi 〉〈φi | = I ⊗ (nxσx + nyσy + nzσz), (B1)

where the left hand side of Eq. (B1) represents a generic element in VT and the right hand side
a generic element of Vσ . The set of {|φi 〉}4

i=1 forms an orthonormal basis of vectors belonging to
Supp(P1) ∪ Supp(P2), and without loss of generality we can take n2

x + n2
y + n2

z = 1. This guarantees
that the RHS has the spectral decomposition of the following form:

I ⊗ |v〉〈v| − I ⊗ |v⊥〉〈v⊥|,

with two +1 eigenvalues and two −1 eigenvalues and vector |v〉 that can be arbitrary thanks
to freedom in nx , ny, nz . Moreover projectors Pi can be written as P1 =

∑r1
i=1 |φi 〉〈φi | and P2 =∑4

i=r1+1 |φi 〉〈φi |. Let us now investigate the circumstances under which the equation can be fullfilled,
i.e., the tester is not extremal.

1. Case (r1, r2) = (1, 3)

This type of tester must have the form {T1 = 1
2 |φ1〉〈φ1|, T2 = 1

2

∑4
i=2 |φi 〉〈φi |}. The LHS of

Eq. (B1) must have the same eigenvalues as the RHS. Without loss of generality we can assume
λ1 = λ2 = −λ3 = −λ4, because we can suitably relabel |φ2〉, |φ3〉, |φ4〉. Hence, we have

|φ1〉〈φ1| + |φ2〉〈φ2| = I ⊗ |e〉〈e|,

|φ3〉〈φ3| + |φ4〉〈φ4| = I ⊗ |e⊥〉〈e⊥|, (B2)
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where e = v or e = v⊥ depending on λ1 = +1 or λ1 = −1, respectively. In both cases Eq. (B2)
implies that the qubit 1-tester of the form T1 = 1

2 |φ1〉〈φ1| T2 = 1
2 (I ⊗ I − |φ1〉〈φ1|) is not extremal

if and only if |φ1〉 = | f 〉 ⊗ |e〉 is a product vector.

2. Case (r1, r2) = (2, 2)

In this case the tester has the form {T1 = 1
2 P1 = 1

2 (|φ1〉〈φ1| + |φ2〉〈φ2|), T2 = 1
2 P2 =

1
2 (|φ3〉〈φ3| + |φ4〉〈φ4|). In order to fulfill the equation (B1) two λi ’s must be equal to +1 and
two to −1. Thus, λ1, λ2 have either same signs or different signs. If λ1 = λ2 = ±1 then the equa-
tion (B1) can be fulfilled if and only if P1 = I ⊗ |e〉〈e|, where e = v for λ1,2 = 1 or e = v⊥ for
λ1,2 = −1. If λ1 = −λ2 then we can assume without loss of generality that |φ3〉, |φ4〉 are labeled so
that λ1 = λ3. We have

|φ1〉〈φ1| + |φ3〉〈φ3| = I ⊗ |e〉〈e|, (B3)

where e = v or e = v⊥ depending on λ1 = 1 or λ1 = −1, respectively. This may hold only if
|φ1〉 = | f 〉 ⊗ |e〉 and |φ3〉 = | f ⊥〉 ⊗ |e〉 for some vector | f 〉 ∈ H2. Due to equation (B3) |φ2〉〈φ2| +
|φ4〉〈φ4| = I ⊗ |e⊥〉〈e⊥| and |φ2〉 = |h〉 ⊗ |e⊥〉, |φ4〉 = |h⊥〉 ⊗ |e⊥〉 for some |h〉 ∈ H2. Thus, if
λ1 = −λ2 the tester is not extremal if and only if

P1 = | f 〉〈 f | ⊗ |e〉〈e| + |h〉〈h| ⊗ |e⊥〉〈e⊥|

P2 = | f ⊥〉〈 f ⊥| ⊗ |e〉〈e| + |h⊥〉〈h⊥| ⊗ |e⊥〉〈e⊥|.

for some |e〉 ∈ H1, | f 〉, |h〉 ∈ H2.27 The form of projectors P1, P2 can be equivalently stated as
the existence of a product vector | f 〉 ⊗ |e〉 in the support of P1 such that | f ⊥〉 ⊗ |e〉 belongs to
the support of P2. From our derivation it should be clear that if P1 /= I ⊗ |e〉〈e| for any |e〉 ∈ H1

and P1 does not have the above mentioned form then {T1, T2} is an extremal qubit two-outcome
tester.

APPENDIX C: EXTREMALITY OF AN INSTRUMENT AND THE POVM AND THE CHANNEL
DERIVED FROM IT

The present Appendix addresses the question about possible combinations of extremality of
an instrument and the POVM and channel derived from it. We show feasibility of seven out of
the eight possible combinations, by providing an example for each of them. In the following table,
we enumearte the possible combinations, and we define them by writing + if the object in the
corresponding column (channel, POVM, instrument) is extremal, and − otherwise.

Combination Instrument Channel POVM

1 + + +
2 + + −
3 + − +
4 + − −
5 − + +
6 − + −
7 − − +
8 − − −

The existence of an instrument corresponding to combination number 5 is left as an open
problem. Here is a list of examples for each of the remaining combinations.

Combination 1: The identical transformation is the most simple example of this kind. Also
constant mapping to a fixed pure state has the desired properties of extremality.
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Combination 2: Consider an instrument with two outcomes mapping a single qubit into two-
qubits. First, we define

P0 := 1
3
|0〉〈0| + 2

3
|1〉〈1|

P1 := 2
3
|0〉〈0| + 1

3
|1〉〈1|

W := |0〉〈1| − |1〉〈0|

and we define the Kraus operators of the instrument as follows:

M0 :=
√

P0 ⊗ 1√
2

(|0〉 + |1〉)

M1 := 1√
2

√
P1 ⊗ |0〉 + 1√

2
W

√
P1 ⊗ |1〉,

where for each outcome i = 0, 1 we have only a single Kraus operator. One can easily verify, that
the induced POVM {P0, P1} is not extremal, but linear independence of its elements guarantees
extremality of the instrument. In order to check extremality of the induced channel one needs to take
the minimal Kraus representation and check Choi’s linear independence condition.

Combination 3: The Lüders instrument of a Von Neumann measurement is an extremal instru-
ment, which induces extremal POVM and a non extremal channel.

Combination 4: This desired type of instrument can be constructed as in Eq. (30) with a POVM
{Pi }M

i=1, whose elements are linearly independent and commute. As a simple example one can take
the qubit POVM {P0, P1} defined in Combination 2.

Combination 6: This type of instrument can be constructed as follows. One takes an extremal
channel, whose minimal dilation has N (more than one) Kraus operators Ki . Using these operators
we define two instruments with N outcomes differing only in the choice of Kraus operators that
correspond to each outcome (e.g., M (1)

i = Ki , M (2)
i = Kσ (i), where σ is a permutation). Taking a

convex combination of the two instruments provides the desired example.
Combination 7: This type of instrument can be constructed as a convex combination of two

instruments, which induce the same POVM, but different channels. One takes for example the
instrument {Ni }M

i=1 as in Eq. (30) for an extremal POVM {Pi }M
i=1, and mixes it with the same

instrument, which in addition applies an unitary channel U on the quantum output. Obviously, the
induced channel differs, while the induced POVM remains the same.

Combination 8: For the construction of this example it is sufficient to take a convex combination
of two instruments, which induce different POVMs, and different channels.
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