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Isotropic quantum walks on lattices and the Weyl equation

Giacomo Mauro D’Ariano,* Marco Erba,† and Paolo Perinotti‡

QUIT Group, Dipartimento di Fisica, Università degli Studi di Pavia and Gruppo IV, Sezione di Pavia, INFN,
Via Bassi 6, 27100 Pavia, Italy

(Received 2 August 2017; published 1 December 2017)

We present a thorough classification of the isotropic quantum walks on lattices of dimension d = 1,2,3 with
a coin system of dimension s = 2. For d = 3 there exist two isotropic walks, namely, the Weyl quantum walks
presented in the work of D’Ariano and Perinotti [G. M. D’Ariano and P. Perinotti, Phys. Rev. A 90, 062106
(2014)], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via
a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result
completely general.
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I. INTRODUCTION

Recently the possibility of implementing actual quantum
simulations of quantum fields [1–4] has been accompanied by
novel approaches to foundations of the theory [5–8], including
its derivation from informational principles [9,10] and the
recovery of its Lorentz covariance [11]. This has provided
progress in the research based on the idea originally proposed
by Feynman [12] of recovering physics as pure quantum
information processing. Deriving quantum field theory from
just denumerable quantum systems provides an emergent
notion of space-time, with no prior background. This suggests
that the approach may be promising for future development of
quantum theories of gravity.

The mathematical formalization of the discrete quantum
algorithm running a quantum field dynamics is provided by the
notion of a quantum cellular automaton [13–15]. A quantum
cellular automaton is a unitary homogeneous evolution of the
algebra of local observables that preserves locality. When the
automaton is linear in the local algebra generators, the cellular
automaton is usually referred to as a quantum walk (QW)
[16–18] and is suited for the description of the free field theory
for a fixed number of particles.

A quantum walk on a graph represents a coherent coun-
terpart of a classical random walk on the same graph. In
the derivation of Ref. [9] it was proved that, if one assumes
homogeneity of the evolution, the graph must be the Cayley
graph of a group G. When the graph corresponds to a free
Abelian group G ∼= Zd , one finds the two Weyl QWs (one
for the left- and one for the right-handed mode), recovering
the Weyl equation in d + 1 dimensions for d = 1,2,3. An
alternative derivation of the Weyl QWs for d = 3 on the bcc
lattice was recently presented in Ref. [19]. In Ref. [9] the
derivation of the Weyl QWs exploited the technical assumption
that there is a quasi-isometry [20] of the Cayley graph in
a Euclidean manifold such that no vertex can lie within the
sphere of nearest neighbors. On the other hand, most of the
derivation did not use the isotropy principle. In the present
paper, on the contrary, we exploit the isotropy principle from
the very beginning of the derivation, thus avoiding the above
assumption and making the classification of the isotropic QWs
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on Zd completely general. In the present paper the derivation
of the Weyl QWs is included in a complete classification of
isotropic QWs on lattices of dimension d = 1,2,3 with a coin
system of dimension s = 2. The result exploits the isotropy
notion of Ref. [9], which is extended in this paper in order
to account for groups with generators of different orders. We
will introduce a technique to construct the Cayley graphs of a
given group G supporting an isotropic QW. Remarkably, the
Cayley graph is unique for each dimension d = 1,2,3.

The paper is organized as follows. In Sec. II we review
the notion of Cayley graph of a group G and define QWs on
Cayley graphs, introducing the definition of isotropy and its
main properties. In Sec. III we review the theory of QWs on
free Abelian groups. In Sec. IV we select the possible Cayley
graphs according to a necessary condition for a QW to be
isotropic. In Sec. V we prove a second necessary condition for
isotropy that is used in the Appendix to refine the selection
of Cayley graphs and we solve the unitarity condition on the
selected Cayley graphs for d = 1,2,3, finding the two Weyl
QWs. Section VI summarizes the paper. In the Appendix we
report technical proofs and details.

II. ISOTROPIC QWS ON CAYLEY GRAPHS

We now define the QW on a Cayley graph !(G,S+) of a
group G, with generating set S+. A generating set S+ ⊆ G
is a set of elements of G such that all the elements of the
group can be expressed as words of elements of S+ along with
their inverses. The Cayley graph is a colored directed graph
with the elements of G as vertices and the elements of S+
as edges: A color is associated with each generator h ∈ S+
and two vertices g,g′ ∈ G are connected by the colored edge
h ∈ S+ if g′ = gh, with the arrow directed from g to g′. In
the following we will take |S+| < ∞, namely, the group G is
finitely generated. The Cayley graph of a group can be defined
by giving a presentation, namely, choosing a set of generators
(an alphabet) and a set of relators, i.e., a set of words which are
equal to the identity of G. This completely specifies a unique
group G. The cardinality of the group G can be finite or infinite,
depending on its relators; however, the most interesting case in
the present context is that of a finitely presented infinite group.

Let {|g⟩}g∈G be an orthonormal basis for ℓ2(G). The right-
regular representation T of G is defined as

Tg|g′⟩ := |g′g−1⟩. (1)
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A QW on the Cayley graph !(G,S+) of the group G is a
unitary operator A on ℓ2(G) ⊗ Cs , with 1 ! s < ∞, that can
be written as

A =
∑

h∈S

Th ⊗ Ah,

where S = S+ ∪ S−, S− = S−1
+ is the set of inverses of S+,

and {Ah}h∈S ⊆ Ms(C) are the so-called transition matrices of
the QW. It is worth mentioning that also other constructions
of QWs have been given in the literature, for example, QWs
such that the coin system is generated by the set of edges of
the underlying graph (see, e.g., Ref. [21], and Ref. [22] for an
overview).

Generally, we will consider also self-transitions, corre-
sponding to the inclusion of the identity e ∈ G in the gen-
erating set, which is then given by S ≡ S+ ∪ S− ∪ {e}. In the
following, for each group G considered, we will assume Ah ̸=
0 for all h ∈ S+ ∪ S−, whereas in general we allow for the case
Ae = 0. We also denote by Sn

+ ⊆ S+ the set of generators of
order n " 2, i.e., n is the smallest integer such that hn = e.
Notice that the most common case is that of n = +∞.

For the purpose of introducing the concept of isotropic
QWs, we recall that a graph automorphism is defined as a
bijective map of the vertices that preserves the set of edges. For
a Cayley graph this means that the automorphism l is such that
if g′ = gh, then l(g′) = l(g)h′, with g,g′ ∈ G and h,h′ ∈ S+.
Then an automorphism of the Cayley graph can be expressed as
a permutation λ of the set of colors S+, where for every g ∈ G
and h ∈ S+ one has l(gh) = l(g)λ(h) for some permutation
λ of S+. Let us denote by $ a group of permutations of the
elements of S+.

Definition 1. A QW on !(G,S+) is called isotropic with
respect to S+ if there exists a group L of automorphisms of
!(G,S+) that can be expressed as a permutation of the colors
S+ such that the evolution operator of the QW is L covariant,
i.e., there exists a projective unitary representation U over Cs

of L such that

Aλ(h) = UlAhU
†
l ∀l ∈ L,∀h ∈ S+,

where λ ∈ $, and such that the action of $ is transitive on
each subset Sn

+.
The previous definition guarantees that the group of local

changes of basis representing the isotropy group L, which is a
group of automorphisms of the graph, acts just as a permutation
of the transition matrices, implying that all the directions are
dynamically equivalent. To satisfy homogeneity, one has to
demand also the following condition:1

[Ul,Ah] ̸= 0 ∀h ∈ S+,∀l ∈ L : l(h) ̸= h. (2)

Indeed, two transition matrices associated with different
generators must be distinct. In particular, this implies that if L
does not contain nontrivial elements stabilizing all the h ∈ S,
then the representation U must be faithful (otherwise it would
contain at least one nontrivial element represented as Is).

1The homogeneity requirement defined in Ref. [9] should be
completed upon requiring that any two nodes remain distinguishable
from the point of view of a third node. For details we will refer to
Ref. [23]. Equation (2) follows from this definition.

Propostion 1. The automorphisms of the Cayley graph
!(G,S+) are also automorphisms of G.

Proof. Consider the action of arbitrary elements l ∈ L on
the graph vertices. We have

λ(h) = l(h) = l(eh) = eλ(h) ∀h ∈ S+,

and since l(gh) = l(g)λ(h) ∀g ∈ G, then l(e) = e. The same
holds ∀h ∈ S−. Moreover,

l(hh′) = l(h)λ(h′) ≡ l(h)l(h′) ∀h,h′ ∈ S.

Iterating, in general we obtain

l(h1 · · · hp) = l(h1) · · · l(hp) ∀h1, . . . ,hp ∈ S, (3)

and since S is a set of generators for G, this amounts to

l(gg′) = l(g)l(g′) ∀g,g′ ∈ G.

Accordingly, L is a group automorphism of G. #
The isotropy conditions corresponds to the covariance

A =
∑

h∈S

Th ⊗ Ah =
∑

h∈S

Tl(h) ⊗ UlAhU
†
l ∀l ∈ L. (4)

The covariance condition (4) and the transitivity of $ on each
Sn

+ imply, by linear independence of the Th, that every Sn
+ is

invariant under some subgroup Ln ! L. In fact, any Sn
+ is the

orbit of an arbitrary generator h
(n)
1 ∈ Sn

+ under Ln, denoted by
OLn (h(n)

1 ).
Proposition 2. The isotropy group L is a finite subgroup of

Aut(G).
Proof. By Proposition 1 the isotropy group L is a group of

automorphisms of G. By Eq. (3), L ∼= $, hence L is finite. #
Corollary 1. Each subgroup Ln ! L is isomorphic to a finite

permutation group acting transitively on Sn
+.

Corollary 2. If all generators have the same order, L is
isomorphic to a finite permutation group acting transitively
on S+.

By Eq. (4) one can always choose the projective unitary
representation U with unit determinant, namely, Ul ∈ SU(s)
∀l ∈ L. Notice that, by definition of isotropy, either Sn

+ does
not contain the inverse of any of its elements or it coincides
with the whole set Sn := Sn

+ ∪ Sn
−.

In the following we will consider the isotropic QWs
on !(G,S+) with s = 2 and G ∼= Zd with d = 1,2,3. For
d = 3 we discover that there are two QWs (modulo discrete
symmetries) that for large-scales give the two Weyl equations,
one for the left- and one for the right-handed mode. In Ref. [9] it
is shown that, coupling two Weyl QWs in the only possible way
consistent with the above requirements (specifically locality),
the resulting QW is unique (modulo discrete symmetries) and
describes exactly the Dirac equation for large scales.

III. QUANTUM WALKS ON CAYLEY GRAPHS OF Zd

Since we are considering Abelian groups, we will denote
the group elements as usual with the boldface vector notation
as n ∈ G and the generators as h ∈ S. Moreover, we will use
the additive notation for the group composition and 0 for the
identity element. The space ℓ2(G) will be the span of {|n⟩}n∈G
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and the generators h are represented by the operators

Th :=
∑

n∈G

|n + h⟩⟨n|.

We now treat the elements of G as vectors in Rd . Generally,
the elements of S are linearly dependent. We introduce all the
sets Dn ⊆ S+ of linearly independent elements

Dn := {hi1 , . . . ,hid },

where n labels the specific subset. For every Dn we construct
the dual set D̃n defined by

D̃n :=
{
h̃(n)

1 , . . . ,h̃(n)
d

}
,

where

h̃(n)
l · him = δlm.

Now we define the set

D̃ :=
⋃

n

D̃n.

The Brillouin zone B ⊆ Rd is defined as the polytope

B =
⋂

h̃∈D̃

{k ∈ Rd | −π |h̃|2 ! k · h̃ ! π |h̃|2}.

The unitary operator of the QW is given by

A =
∑

n∈G

∑

h∈S

|n + h⟩⟨n| ⊗ Ah. (5)

One has [A,Th ⊗ Is] = 0. The unitary irreducible represen-
tations are one dimensional and are classified by the joint
eigenvectors of Th,

Thi
|k⟩ =: e−ik·hi |k⟩,

where

|k⟩ := 1√
|B|

∑

n∈G

eik·n|n⟩, |n⟩ = 1√
|B|

∫

B

dk e−ik·n|k⟩.

Notice that

⟨k|k′⟩ = 1
|B|

∑

n∈G

ei(k−k′)·n = δ2π (k − k′).

Translation invariance of the QW in Eq. (5) then implies the
following form for the unitary evolution operator:

A =
∫

B

dk|k⟩⟨k| ⊗ Ak,

where the the matrix

Ak =
∑

h∈S

eih·kAh (6)

is unitary for every k. Notice that Ak is a matrix polynomial
in eih·k. The unitarity conditions on Ak for all k ∈ B then read

∑

h∈S

AhA
†
h =

∑

h∈S

A
†
hAh = Is, (7)

∑

h−h′=h′′

AhA
†
h′ =

∑

h−h′=h′′

A
†
h′Ah = 0. (8)

Equations (7) and (8) are a set of necessary and sufficient
conditions for the unitarity of the time evolution, since they
can be derived just imposing that the matrix Ak is unitary.
As explained in Sec. II, the requirement of isotropy for the
QW needs the existence of a group that acts transitively
over the generator set S+ with a faithful projective unitary
representation that satisfies Eq. (4). Notice that one has the
identity

(I ⊗ A
†
k=0)A =

∑

h∈S

Th ⊗ A′
h,

with
∑

h∈S A′
h = Is , namely, modulo a uniform local unitary

we can always assume that
∑

h∈S

Ah = Is, (9)

as explained in the following. Indeed, the isotropy requirement
implies that Ak=0 commutes with the representation of the
isotropy group L, whence we can classify the QW by requiring
the identity (9) and then multiplying the QW operator A on
the left by (I ⊗ V ), with V unitarily commuting with the
representation of L. In the case that the representation is
irreducible, then by the Schur lemma we have only V = Is .

From now on we will restrict our study to s = 2, which
corresponds to the simplest nontrivial QW in the case of G
Abelian. Indeed, in Ref. [24] it was proved that if G is an
arbitrary Abelian group and s = 1 (scalar QW case), then the
evolution is trivial.

IV. IMPOSING ISOTROPY: ADMISSIBLE CAYLEY
GRAPHS OF Zd

In this section we investigate how the isotropy assumption
restricts the possible presentations of G ∼= Zd . By Proposition
2, the isotropy groups are finite subgroups L < Aut(Zd ) ∼=
GL(d,Z): Their action, by Corollary 2, is defined to be
transitive on the generating set S+ and then is extended on
all Zd by linearity. Indeed, the generating set S+ is the orbit of
an arbitrary vector v ∈ Rd under the action of a finite subgroup
L < GL(d,Z).

Let M be a representation on integers of L (so that
MlMf = Mlf for l,f ∈ L) and let us define the matrix
P :=

∑
l∈L MT

l Ml . For every f ∈ L we have

PMf =
∑

l∈L

MT
l Mlf =

∑

l′∈L

MT
l′f −1Ml′

=
∑

l′∈L

(Ml′Mf −1 )T Ml′ = MT
f −1P. (10)

Moreover, being a sum of positive operators, P is also posi-
tive. Then, for |η⟩ ∈ ker P , ⟨η|P |η⟩ =

∑
l∈L⟨η|MT

l Ml|η⟩ = 0
implies that Ml|η⟩ = 0 ∀l ∈ L, namely, |η⟩ = 0 since all Ml

are invertible. Thus P has a trivial kernel and we can define
the invertible change of representation

M̃l := P 1/2MlP
−1/2. (11)

Using the definition of P and property (10), we obtain

M̃l
T
M̃l = P −1/2MT

l PMlP
−1/2

= P −1/2MT
l MT

l−1PP −1/2 = I.
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This means that, as long as one embeds the Cayley graphs
in Rd , L can always be represented orthogonally. Notice that
the representation M̃ is in general on real numbers, namely,
{M̃l}l∈L ⊂ O(d,R) [from now on we denote it just by O(d)].

As one can find in Refs. [25,26], the finite subgroups of
GL(d,Z) which are also subgroups of O(d) are isomorphic
to (i) d = 3 for Zn and Dn with n ∈ {1,2,3,4,6}, A4 and S4,
and the direct products of all the previous groups with Z2;
(ii) d = 2 for Zn and Dn with n ∈ {1,2,3,4,6}; and (iii) d = 1
for {e} and Z2. Accordingly, our cases of interest d = 1,2,3
can be treated together, considering just d = 3. We notice that
for d = 1,2 the finite subgroups of GL(d,Z) coincide with
those of O(d), while for d = 3 we are restricted to those finite
subgroups of GL(3,Z) that are also subgroups of O(3).

A given generating set for Zd satisfying the definition of
isotropy can be constructed orbiting a vector in Rd under the
aforementioned finite subgroups in O(d). Accordingly, given
a presentation for Zd , if the associated Cayley graph satisfies
isotropy then one can represent the generators having all the
same Euclidean norm, namely, they lie on a sphere centered
at the origin: They form the orbit, which we will denote by
OL(v), of an arbitrary d-dimensional real vector v under the
action of a finite subgroup L < GL(d,Z) represented in O(d).

In the Appendix we will consider the orbit of a vector
v ∈ R3 under the real, orthogonal, and three-dimensional
faithful representations of L. Indeed, if we took into account
also unfaithful representations, these would have a nontrivial
kernel, which is a normal subgroup, and the effective action
on v would be given by a faithful representation of the
quotient group. Inspecting the subgroup structure of the finite
subgroups of GL(3,Z), one can check that all the possible
quotients are themselves finite subgroups of GL(3,Z).2 Thus,
the case of unfaithful representations is already considered as
long as we take into account the faithful ones.

V. THE QWS WITH MINIMAL COMPLEXITY: THE WEYL
QUANTUM WALKS

In the following X = V |X| will define the polar decompo-
sition of the operator X, with |X| :=

√
X†X the modulus of

X and V unitary. Thus we will write the transition matrix as

Ah = Vh|Ah|. (12)

From Eq. (8) with h′′ = 2h it follows that AhA
†
−h = 0, namely,

|Ah∥A†
−h| = 0. By definition the transition matrices are non-

null, hence |Ah| and |A−h| must have orthogonal supports, and
for s = 2 they must then be rank-1. Thus they can be written
as

Ah =: αhVh|ηh⟩⟨ηh|, A−h =: α−hV−h|η−h⟩⟨η−h|, (13)

where {|η+h⟩,|η−h⟩} is an orthonormal basis and αh > 0. By
the isotropy requirement we have that for all h,h′, α±h =

2This is straightforward as far as Zn and Dn are concerned; as for
A4 and S4, one can verify it in a direct way considering their faithful
representations given in Appendix 1 a and 1 b.

α±h′ =: α±. Furthermore, it is easy to see that we can choose
Vh = V−h for every h.3

Denoting the elements of S± by ±hi , suppose that there
exists a subgroup K ! L such that, for some h1 ∈ S+,
∀hi ,hj ∈ OK (h1) with hi ̸= hj , and for hl ,hm ∈ {0,OL(h1)},
one has

hi − hj = hl − hm ⇐⇒ (hi = hl) ∨ (hi = −hm). (14)

Then a second set of equations from conditions (8) is

Ah1A
†
hj

+ A−hj
A

†
−h1

= 0, (15)

A
†
h1

Ahj
+ A

†
−hj

A−h1 = 0. (16)

Multiplying Eq. (15) by A
†
hj

on the left or by Ah1 on the right,
we obtain

A
†
hj

Ah1A
†
hj

= Ah1A
†
hj

Ah1 = 0.

Using the isotropy requirement and posing Ahj
= UkAhi

U
†
k ,

we have

UkA
†
h1

U
†
k Ah1UkA

†
h1

U
†
k = Ah1UkA

†
h1

U
†
k Ah1 = 0.

By exploiting Eq. (13) both the preceding equations become

⟨ηh1 |V
†

h1
U

†
k Vh1 |ηh1⟩⟨ηh1 |Uk|ηh1⟩ = 0.

Then, at least one of the two following conditions must be
satisfied:

⟨ηh1 |V
†

h1
U

†
k Vh1 |ηh1⟩ = 0, (17)

⟨ηh1 |Uk|ηh1⟩ = 0. (18)

Furthermore, we recall that the representation U can be chosen
with unit determinant and for s = 2 one has Uk = cos θI +
i sin θ nk · σ . Then, from Eqs. (17) and (18) one has Uk =
ink · σ . Using the identity

UkUk′ = −nk · nk′I − i(nk × nk′) · σ , (19)

it follows that all the nk must be mutually orthogonal and then
|K| ! 4. The case K ∼= Z3 is not consistent with Eqs. (17) and
(18). Accordingly, we end up with K ∈ {I,Z2,Z2 × Z2,Z4}.
Notice that, up to a change of basis, one can always choose
|η±h1⟩ to be the eigenstates of σZ without loss of generality.
Then, by Eqs. (17) and (18) and imposing Uk ∈ SU(2) ∀k ∈ K ,
up to a change of basis it must be (i) UK := RngK (U ) = H ,
where H := {I,iσX,iσY ,iσZ} is the Heisenberg group; (ii)
UK = J , where J ∈ {Ji}4

i=1, with J1 := {I,iσX}, J2 := {I, −
Vh1 (iσX)V †

h1
}, J3 := {I,iσX, − I, − iσX}, and J4 := {I, −

Vh1 (iσX)V †
h1

, − I,Vh1 (iσX)V †
h1

}; or (iii) UK = {I }. We remark
that H is a projective faithful representation of Z2 × Z2 in
SU(2), {Ji}2

i=1 are projective faithful representations of Z2,

3We follow the argument of Ref. [27]. The condition A
†
hA−h =

0 implies that VhV
†
−h is diagonal in the basis {|η+h⟩,|η−h⟩}. Since

the transition matrices are not full rank, their polar decomposition
is not unique: Vh(|η+h⟩⟨η+h| + eiθh |η−h⟩⟨η−h|) gives the same polar
decomposition as Vh ∀h ∈ S. Accordingly, one can tune the phases
θ±h to choose VhV

†
−h = I ∀h ∈ S.
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h1

(a)

h1

h2

(b)

h1
h2

h3
h4

(c)

FIG. 1. Primitive cells of the unique graphs admitting isotropic QWs in dimensions d = 1,2,3. (a) Integer lattice. The isotropy groups can be
UL = {I } and UL = {I,iσX}, corresponding, respectively, to S+ = {h1} and S+ ≡ S− = {h1,−h1}. (b) Simple square lattice. The isotropy groups
can be UL = {I,iσX},{I,iσZ} and UL = {I,iσX,iσY ,iσZ}, corresponding, respectively, to S+ = {h1,h2} and S+ ≡ S− = {h1,h2, − h1,−h2}.
(c) Body-centered-cubic lattice. The only possible isotropy group is UL = {I,iσX,iσY ,iσZ}, corresponding to S+ = {h1,h2,h3,h4} with the
nontrivial relator h1 + h2 + h3 + h4 = 0. We notice that the case d = 1 is the only one supporting the self-interaction, namely, such that
Ae ̸= 0.

and {Ji}4
i=3 are unitary faithful representations of Z4 in SU(2).

We have thus proved the following result.
Proposition 3. If the isotropy group L contains a subgroup

K such that all the hk ∈ OK (h1) (for h1 ∈ S+) satisfy the
condition (14), then UK = H , J , or I .

Isotropic QWs on Zd for d = 1,2,3

In the Appendix we make use of Proposition 3 along with
the unitarity constraints to exclude an infinite set of Cayley
graphs arising from the aforementioned finite subgroups of
O(3). We then proved the following.

Propostion 4. The primitive cells associated with the unique
graphs admitting isotropic QWs in dimensions d = 1,2,3 are
those shown in Fig. 1.

Throughout the present section, we solve the unitarity
conditions in dimension d = 1,2,3 for the Cayley graphs
associated with the primitive cells shown in Fig. 1 and for
all the possible isotropy groups. We recall that in general each
isotropy group gives rise to a distinct presentation for Zd ,
possibly with the same first-neighbor structure. As discussed
in Fig. 1, different presentations can in general be associated
with the same primitive cell (one can include in S+ the inverses
or not). We will now prove our main result, which is stated in
Proposition 5 after the following derivation.

Before starting the derivation, we recall that in each case we
can choose |η±h1⟩ to be the eigenstates of σZ . Moreover, we
will make use of Eq. (13) to represent the transition matrices,
recalling that Vh = V−h. Finally, we recall that in Sec. III we
showed that one can always impose the condition (9) and
then multiply the transition matrices on the left by an arbitrary
unitary commuting with the elements of the representation UL.

(a) Case d = 1.

We can write the transition matrices associated with
±h1 as

Ah1 = α+V |ηh1⟩⟨ηh1 |, A−h1 = α−V |η−h1⟩⟨η−h1 |.

Multiplying the unitarity conditions on the right by Ah1 and
A

†
−h1

, respectively,

Ah1A
†
e + AeA

†
−h1

= 0,

A†
eAh1 + A

†
−h1

Ae = 0, (20)

one obtains

A±h1A
†
eA±h1 = 0,

which implies that Ae = V W , where W has vanishing diag-
onal elements in the basis {|η+h1⟩,|η−h1⟩}. Substituting into
Eqs. (20), one derives α+ = α− =: n and, up to a change of
basis, Ae = imV σX with m " 0. Imposing the normalization
condition (7) amounts to the relation n2 + m2 = 1. The
admissible isotropy groups are I and, up to a change of basis,
J1. Then, for UL = {I }, the transition matrices are given by

Ah1 = V

(
n 0
0 0

)
, A−h1 = V

(
0 0
0 n

)
,

Ae = V

(
0 im
im 0

)
,

where V is an arbitrary unitary. For UL = {I,iσX}, we impose
the condition (9) and then V can be taken as an arbitrary unitary
commuting with σX.

(b) Case d = 2.

The form of the transition matrices is

A±h1 = α±Vh1 |η±h1⟩⟨η±h1 |,
A±h2 = α±Vh2 |η±h2⟩⟨η±h2 |.

Multiplying the unitarity conditions on the right by Ah1 ,

Ah1A
†
±h2

+ A∓h2A
†
−h1

= 0, (21)

one obtains

Ah1A
†
±h2

Ah1 = 0.
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The latter implies that either (i) |η±h1⟩ = |η±h2⟩ or (ii) |η±h1⟩ =
|η∓h2⟩ and that, in both cases, one can choose Vh1 = Vh2 (iσY )
up to a change of basis. In either case, substituting into Eq. (21)
one derives α+ = α− =: α and, from the normalization condi-
tion (7), α = 1√

2
. Redefining V := Vh2 , in case (i) one obtains

the following family of transition matrices:

A±h1 = ±αV |η∓h1⟩⟨η±h1 |,
A±h2 = αV |η±h1⟩⟨η±h1 |. (22)

The second family, namely, case (ii), is connected to the first
one via the exchange h2 ↔ −h2. One can check that the
self-interaction term Te ⊗ Ae is not supported by the unitarity
conditions

AhA
†
e + AeA

†
−h = A

†
hAe + A†

eA−h = 0 ∀h ∈ S,

namely, Ae = 0. Imposing Eq. (9), one can choose

V = 1√
2

(
1 1

−1 1

)

and then multiply the transition matrices by a unitary com-
muting with the representation UL. The isotropy group can be
either J2 ≡ {I,iσZ} or H for the first family of walks, while
either J1 = {I,iσX} or H for the second one. Thus the first
family is given by

Ah1 = 1
2
V

(
1 0
1 0

)
, A−h1 = 1

2
V

(
0 −1
0 1

)
,

Ah2 = 1
2
V

(
1 0

−1 0

)
, A−h2 = 1

2
V

(
0 1
0 1

)
,

where V is either an arbitrary unitary commuting with σZ

or V = I , while the second family of transition matrices is
obtained exchanging h2 ↔ −h2 and taking V as either an
arbitrary unitary commuting with σX or V = I .

(c) Case d = 3.

The isotropy requirement can be fulfilled with UL = H .
At least one of the two conditions of Eqs. (17) or (18) must
be fulfilled for any nontrivial l ∈ L. Since Eq. (18) cannot be
satisfied for Ul = iσZ , then it must be ⟨ηh1 |V

†
h1

σZVh1 |ηh1⟩ = 0.
This implies

Tr [V †
h1

σZVh1σZ] = 0. (23)

Writing Vh1 in the general unitary form

Vh1 = θ

(
µ −ν∗

ν µ∗

)
,

where |θ |2 = |µ|2 + |ν|2 = 1, the condition in Eq. (23) implies
that |µ| = |ν| = 2−1/2, and using the polar decomposition (13)
of A±h1 we obtain

Ah1 = α+√
2

(
φ 0
ψ 0

)
, A−h1 = α−√

2

(
0 −ψ∗

0 φ∗

)
, (24)

with φ and ψ phase factors. Using isotropy, namely, consider-
ing the orbit of the above matrices under conjugation with H ,

we obtain

Ah2 = α+√
2

(
0 ψ
0 φ

)
, A−h2 = α−√

2

(
φ∗ 0

−ψ∗ 0

)
,

Ah3 = α+√
2

(
0 −ψ
0 φ

)
, A−h3 = α−√

2

(
φ∗ 0
ψ∗ 0

)
,

Ah4 = α+√
2

(
φ 0

−ψ 0

)
, A−h4 = α−√

2

(
0 ψ∗

0 φ∗

)
.

(25)

Also in this case, the self-interaction term is not supported by
the unitarity conditions. Finally, we can write the matrix Ak in
Eq. (6) as

Ak =
4∑

i=1

(Ahi
eiki + A−hi

e−iki )

and imposing unitarity of Ak for every k we obtain the
conditions

α2
+ = α2

− = 1
4 , φ∗2 + φ2 = ψ∗2 + ψ2 = 0,

namely,

φ,ψ ∈
{
±ζ+ := ±1 + i√

2
, ± ζ− := ±1 − i√

2

}
.

The different choices of the overall signs for φ and ψ are
connected to each other by an overall phase factor and by
unitary conjugation by σZ . Then we can fix them by choosing
the plus signs. The choices φ = ζ± and ψ = ζ∓ are equivalent
to φ = ψ = ζ± via conjugation of the former by e±i(π/4)σZ

and an exchange h1 ↔ h4. Accordingly, the QWs found are
given by the transition matrices of Eqs. (24) and (25) with
ψ = ϕ = ζ±, namely, the two Weyl QWs presented in Ref. [9].

We have thus proved the following main result.
Proposition 5 (classification of the isotropic QWs on lattices

of dimension d = 1,2,3 with a coin system of dimension s =
2). Let S = S+ ∪ S− ∪ {e} denote a set of generators for Zd

and let {Ah}h∈S denote the set of transition matrices of a QW
on Zd with a coin system of dimension s = 2 and isotropic on
S+. Then for each d = 1,2,3 the admissible graphs are unique
(see Fig. 1) and one has the following. (a) For case d = 1
one has

Ah1 = V

(
n 0
0 0

)
, A−h1 = V

(
0 0
0 n

)
,

Ae = V

(
0 im
im 0

)
,

where n and m are real such that n2 + m2 = 1, and V is an
arbitrary unitary if S+ = {h1} or V is a unitary commuting with
σX if S+ = {h1, − h1}. (b) For case d = 2 one has Ae = 0 and

Ah1 = 1
2
V

(
1 0
1 0

)
, A−h1 = 1

2
V

(
0 −1
0 1

)
,

Ah2 = 1
2
V

(
0 1
0 1

)
, A−h2 = 1

2
V

(
1 0

−1 0

)
,

where V is a unitary commuting with σX if S+ = {h1,h2} or
V = I if S+ = {h1,h2, − h1, − h2}. (c) For case d = 3 one

062101-6



ISOTROPIC QUANTUM WALKS ON LATTICES AND THE . . . PHYSICAL REVIEW A 96, 062101 (2017)

has Ae = 0 and

Ah1 =
(

η± 0
η± 0

)
, A−h1 =

(
0 −η∓

0 η∓

)
,

Ah2 =
(

0 η±

0 η±

)
, A−h2 =

(
η∓ 0

−η∓ 0

)
,

Ah3 =
(

0 −η±

0 η±

)
, A−h3 =

(
η∓ 0
η∓ 0

)
,

Ah4 =
(

η± 0
−η± 0

)
, A−h4 =

(
0 η∓

0 η∓

)
,

where η± = 1±i
4 and S+ = {h1,h2,h3,h4} with the nontrivial

relator h1 + h2 + h3 + h4 = 0.

VI. CONCLUSION

In this paper we presented a complete classification of the
isotropic quantum walks on lattices of dimension d = 1,2,3
with coin dimension s = 2. We have extended the isotropy
definition of Ref. [9] to account for groups with generators
of different orders. We introduced a technique to construct
the Cayley graphs of a given group G satisfying a relevant
necessary condition for isotropy. This allowed us to exclude
an infinite class of Cayley graphs of Zd . The technique is
sufficiently flexible to be used in the future for other generally
non-Abelian groups. Remarkably, the Cayley graph is unique
for each dimension d = 1,2,3 and for d = 3 the only admissi-
ble QWs are the two Weyl QWs presented in Ref. [9]. The use
of isotropy since the very beginning has made the solution
of the unitarity equations significantly shorter. Moreover,
we eliminated the superfluous technical assumption used in
Ref. [9] and mentioned in the Introduction. In consideration of
the length of the derivation from informational principles of
the Weyl equation in Ref. [9], the present derivation constitutes
a thoroughly independent check. Finally, this result represents
an extension of the classification of Ref. [24].
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APPENDIX: EXCLUDING CAYLEY GRAPHS

In Appendix 1–4 we will exclude the infinite family of
graphs arising from the following finite isotropy groups L <
O(3): (1) A4, S4, and their direct product with Z2 (except for
the cases in item 2); (2) the special instances of item 1 where
the orbits contain the vertices of a truncated tetrahedron; (3)
Zn and Dn for n = 3,4,6 and their direct product with Z2; and
(4) one special instance arising from D2, D2 × Z2.

1. Excluding A4- and S4-symmetric Cayley graphs

In this section we use the convention that unwritten matrix
elements are zero. In Secs. 1 a and 1 b we will consider the
orbit of an arbitrary three-dimensional vector v = (α,β,γ )T

under the action of the finite groups L ∼= A4,S4 in O(3). To
this purpose, as discussed in Sec. IV, we will use the real,
orthogonal, and three-dimensional faithful representations of
L, identifying its representation with the group itself. In the
present case of L ∼= A4,S4, such representations coincide with
the irreducible ones, since the reducible ones cannot be faithful
[otherwise they would have orthogonal blocks of dimension at
most 2, but A4,S4 are not subgroups of O(2)].

We denote by OL(v) the family of orbits of v under the
action of L, parametrized by α,β,γ . Each orbit satisfies a
necessary condition to give rise to an isotropic presentation
for Zd for d = 1,2,3.

Proposition 6. If L contains a ternary subgroup K ∼= Z3
such that for hi ,hj ∈ OK (v) and hl ,hm ∈ OL(v) the condition
in Eq. (14) is satisfied, then the set of vertices OL(v) cannot
satisfy the necessary conditions (16) and (15) for unitarity.

Proof. By Proposition 3, K has to be a subgroup of the
Heisenberg group H . However, H does not contain ternary
subgroups. #

We will make use of Proposition 6 to exclude an infinite
family of presentations arising from L ∼= A4,S4. Since by
Eq. (14) we are interested in sums or differences of generators,
the cases L ∼= A4 × Z2,S4 × Z2 are already accounted for:
Their irreducible representations just add the inversion to the
irreducible ones of A4,S4.

The groups L contain four isomorphic copies of Z3 (see
Secs. 1 a and 1 b). Let us denote by D the generator of one
of these cyclic subgroups. The content of Eq. (14) for a fixed
choice of i,j translates to the following. Suppose that for all
A,B ∈ L0 := {0 ∈ M3(R)} ∪ L one has

(I − D)v = s(A + tB)v ⇔ (sAv = v) ∨ (stBv = v) (A1)

(s,t signs). Our strategy is now to solve the necessary
conditions for the violation of (A1), consisting in systems
of the form

(I − D − s(A + tB))v = 0 ∀A,B ∈ L0. (A2)

These will produce some solutions v0. Then we can choose
another vector in OL(v0), impose again Eq. (A2), and iterate
until we end up either with the trivial solution or with a
system of linear equations for α,β,γ . By Proposition 6, the
only A4- or S4-symmetric Cayley graphs of Z3 for which
the unitarity conditions may be satisfied must then be found
among the nontrivial solutions of the above systems. Since
only the condition (A2) is necessary, we need to check
whether the solutions actually violate the condition (A1).
The remaining differences (D − D2)v and (D2 − I )v are the
orbit of (I − D)v under D; then we can just solve (A2) and
check (A1).

In the following we will show that (A1) has only trivial
solutions for A,B ∈ L, except for the special case where v =
α(3,1,1)T , which will be treated separately in Sec. 2. At the
end of Sec. 1 b we will then prove the same result in the case
of B = 0.

It is useful to notice the following.
Remark 1. v1 ∈ R3 solves

[I − D − s(A + tB)]v1 = 0
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if and only if v2 := F−1
2 v1 solves

F1[I − D − s(A + tB)]F2v2 = 0

for some arbitrary F1,F2 ∈ GL(3,R). In particular, this is
relevant in the case F2 ∈ L, because it means that the orbits
generated by the two solutions v1 and v2 coincide.

This remark will allow us to considerably reduce the
number of systems we have to solve. In the following we
will refer to a particular solution for (A2) indifferently with
(i) the solution vector v0, (ii) the lattice which v0 gives rise to,
(iii) the polyhedron whose vertices are the elements of OL(v0),
(iv) any other vector in OL(v0), or (v) the orbit OL(v0). The
cases we will end up with are the following:

(1) The simple cubic lattice, generated orbiting vs =
α(1,0,0)T under A4, has its vertices all signed permutations of
the coordinates of vs .

(2) The bcc lattice, generated orbiting vb = α(1,−1,−1)T

under S4, has its vertices all signed permutations of the
coordinates of vb.

(3) The cuboctahedron has vertices that are all signed
permutations of the coordinates of vc = α(1,−1,0)T and are
generated by orbiting vc under A4.

(4) The truncated tetrahedron has vertices that are all
permutations with an even number of minus signs of the
coordinates of vt t = α(3,1,1)T and are generated by orbiting
vt t under A4; in addition, one can also find the solution
including the inverses, which is given by OS4 (vt t ).

(5) The truncated octahedron has vertices that are all signed
permutations of the coordinates of vto = α(1,−2,0)T and are
generated by orbiting vto under S4.

One can easily check that OL(v0) for the five cases above
actually are generating sets for some presentation of Z3.

In the following, we will choose D = R with R(x,y,z)T =
(z,x,y)T (R is contained in the representation of both A4
and S4). As a consequence, we can consider A ̸= B, since
otherwise there are two possible cases. The first is (I − R)v =
±2Av, implying that (A−1 − A−1R)v = ±2v. Since A,R ∈
O(3), by the triangle inequality it must be

A−1v = ±v, A−1Rv = ∓v,

and in particular v = −Rv holds. This implies that v =
(0,0,0)T . The second is (I − R)v = 0, implying that v =
α(1,1,1)T .

Finally, the reader can check that for v0 ∈ {vs ,vb,vc,vto}
the condition (A1) is not violated, thus excluding the cases of
S+ = OL(v0) by virtue of Proposition 6.

a. Excluding A4-symmetric Cayley graphs

A4 has a unique three-dimensional real irreducible repre-
sentation, generated by the matrices

X1 =

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠, R =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠. (A3)

We define

X0 = I, X2 = RX1R
−1, X3 = R2X1R

−2.

The group contains four isomorphic copies of Z3, generated,
respectively, by the elements of the set {R,X1R,X2R,X3R}
(these are cyclic signed permutations of the coordinates).

We now choose the subgroup generated by R and consider
the difference (I − R)v, setting the condition (A2) for any
A,B ∈ A4. Each of these define linear systems of three
equations for v. If A equals I or R, then it is easy to see that
∃G ∈ A4 such that Gv = sv (s a sign): This implies that either
v = (0,β,γ )T up to signed permutations orOA4 (v) = OA4 (vb).
The latter case was excluded in Sec. 1. The remaining cases are
then (i) A,B ̸∈ {I,R} or (ii) v = (0,β,γ )T and signed permuta-
tions. Case (ii), however, will appear as a special instance of (i).
In case (i), we have six cases for s(A + tB): (1) s(Xi + tXj ) =
(2s

±ξ
0

)
, modulo permutations of the diagonal elements,

with arbitrary sign s and for ξ := 0,2; (2) s(Xi + tXjR) =
(s1 0 t1

t2 s2 0
0 t3 s3

)
, with s1s2 + s1s3 + s2s3 = t1t2 + t1t3 + t2t3 = −1;

(3) s(Xi + tXjR
2) =

(s1 t1 0
0 s2 t2
t3 0 s3

)
, with arbitrary signs tk , and

s1s2 + s1s3 + s2s3 = −1; (4) s(Xi + tXj )R = (
2s

±ξ
0

) and

permutations of the written elements, with arbitrary sign s and

ξ = 0,2; (5) s(Xi + tXjR)R =
( 0 t1 s1

s2 0 t2
t3 s3 0

)
, with arbitrary signs

tk , and s1s2 + s1s3 + s2s3 = −1; and (6) s(Xi + tXj )R2 =
( 2s

±ξ
0

)
and permutations of the written elements, with

arbitrary sign s and ξ = 0,2.
All the above-mentioned permutations of elements and

those between the si and ti are performed by conjugation with
R±1. Since

[I − R − sR(A + tB)R−1] = R[I − R − s(A + tB)]R−1,

by Remark 1 we can just choose one permutation in each of
the six cases to find the orbits of the solutions.

Accordingly, explicitly computing the expression

I − R − s(A + tB) =

⎛

⎝
1 0 −1

−1 1 0
0 −1 1

⎞

⎠ − s(A + tB),

we end up with the following cases: (1)
(1 + 2s 0 −1

−1 1 ± ξ 0
0 −1 1

)
for

s arbitrary sign; (2)
( 2 −2

−ξ ′ ξ
0 0

)
,

( 2 0
−2 ξ

−ξ ′ 0

)
, and

( 0 −2
−ξ ′ 2

0 ξ

)
,

with ξ,ξ ′ = 0,2; (3)
( 2 s1 −1

−1 ξ s2
s3 −1 0

)
, with si arbitrary; (4)

( 1 0 2s − 1
−1 1 0
0 ±ξ − 1 1

)
, with s arbitrary; (5)

( 1 s1 0
−2 1 s2
s3 −ξ 1

)
, with s

arbitrary; and (6)
( 1 2s −1

−1 1 0
±ξ −1 1

)
, with s arbitrary. The only

solution to cases 1 and 4 is OA4 (vb). Cases 3, 5, and 6 can
be treated together since they exhibit a common structure:
Their solutions are OA4 (vb) (which has been already excluded
by Proposition 6) and OA4 (vt t ) (which is excluded in Sec. 2).
The only relevant case is 2, since all the other cases have been
already excluded.
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In case 2, the most general orbits of solutions are OA4 (vi)
for i = 1,2,3, where

v1 =

⎛

⎝
α
β
α

⎞

⎠, v2 =

⎛

⎝
0
β
γ

⎞

⎠, v3 = R2v2. (A4)

Nevertheless, for v ∈ {v2,v3} the condition (A1) is not vio-
lated. Indeed, v2 was found as a solution of

(I − R + X1 − RX1)v2 = 0; (A5)

however, X1v2 = −v2 and thus Eq. (A1) is satisfied. A
similar argument holds for v3. By virtue of Proposition 6 the
corresponding orbits OA4 (v2) and OA4 (v3) are excluded.

From the above analysis we already know that the only
relevant solution is v1 for case 2, modulo cyclic permutations.
We now impose that X1v1, which is in OA4 (v1), is itself a
solution of Eq. (A2). Thus we impose

X1v1 = w ∈

⎧
⎨

⎩

⎛

⎝
α′

β ′

α′

⎞

⎠,

⎛

⎝
α′

α′

β ′

⎞

⎠,

⎛

⎝
β ′

α′

α′

⎞

⎠

⎫
⎬

⎭.

The solutions are OA4 (vs) and OA4 (vb): We can exclude also
this last case.

b. Excluding S4-symmetric Cayley graphs

The group S4 contains A4 as a subgroup of index 2. The
element connecting the two cosets is an involution, which we
will denote by C. The group S4 has two three-dimensional
irreducible representations: Their elements are signed permu-
tation matrices of three elements and the two representations
coincide up to a minus sign on the elements in the coset CA4.
Nevertheless, in our case the sign is irrelevant, since we are
considering combinations s(A + tB) of A,B ∈ S4 with s,t
arbitrary signs. Accordingly, we consider the representation
resulting from orbiting the elements generated by (A3) under
the left action of {I,C} with

C =

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠,

whose effect is just an exchange of the first and third rows.
Let us now define X′

i := CXi . In order to perform the
computation of s(A + tB), we proceed as follows. We have to
compute

s(Xi + tXj ), s(X′
i + tX′

j ),

s(Xi + tXjR), s(X′
i + tX′

jR),

s(X′
i + tXj ), s(X′

i + tXjR), s(X′
i + tXjR

2)
(A6)

and then recover all the remaining combinations by right
multiplication of these by R±1. For (A6), we obtain the

following cases: (1)
(±2

ξ
0

)
and

( ±2
ξ

0

)
, considering all the

permutations of elements and ξ = 0, ± 2, and (2)
(s1 t1

t2 s2
t3 s3

)
,

( t1 s1
t2 s2
s3 t3

)
,
(s1 s2

ξ
s3 s4

)
,
( ξ

t2 s2
s3 t3

)
, and

( t1 s1
s2 t2

ξ

)
for ξ = 0, ± 2. As

mentioned above, one has to add to these cases the matrices
resulting from a right multiplication of the previous ones by
R±1, whose action is a cyclic permutation of the columns. Let
us now consider

I − R =

⎛

⎝
1 0 −1

−1 1 0
0 −1 1

⎞

⎠

and derive the matrices

I − R + s(A + tB)Ri, i = 0, ± 1 (A7)

for all the mentioned cases: (1) It is easy to verify that, in this
case, either the matrices in Eq. (A7) have a trivial solution
or their solutions are OS4 (vb) (already excluded) and OS4 (vt t )
(which will be treated in Sec. 2) and (2)
⎛

⎝
1 + s1 t1 − 1
t2 − 1 1 + s2

t3 − 1 1 + s3

⎞

⎠,

⎛

⎝
1 ξ − 1

t2 − 1 1 + s2
s3 t3 − 1 1

⎞

⎠,

⎛

⎝
1 t1 s1 − 1

s2 − 1 1 t2
t3 s3 − 1 1

⎞

⎠,

⎛

⎝
1 ξ −1

s2 − 1 1 t2
t3 −1 1 + s3

⎞

⎠,

⎛

⎝
1 + t1 s1 −1
−1 1 + t2 s2
s3 −1 1 + t3

⎞

⎠,

⎛

⎝
1 + ξ −1
−1 1 + t2 s2

s3 − 1 1 + t3

⎞

⎠,

⎛

⎝
1 t1 s1 − 1

t2 − 1 1 + s2
s3 −1 1 + t3

⎞

⎠,

⎛

⎝
1 + t1 s1 −1
s2 − 1 1 + t2

−1 ξ + 1

⎞

⎠,

⎛

⎝
1 + t1 s1 −1
s2 − 1 1 t2

t3 − 1 1 + s3

⎞

⎠,

⎛

⎝
1 + s1 t1 − 1
t2 − 1 1 s2

ξ − 1 1

⎞

⎠,

⎛

⎝
1 + s1 t1 − 1
−1 1 + t2 s2
t3 s3 − 1 1

⎞

⎠,

⎛

⎝
1 t1 s1 − 1

−1 1 + s2 t2
ξ −1 1

⎞

⎠,

⎛

⎝
1 + s1 s2 − 1
−1 1 + ξ
s3 −1 1 + s4

⎞

⎠,

⎛

⎝
1 s2 s1 − 1

ξ − 1 1
s4 − 1 1 + s3

⎞

⎠,

⎛

⎝
1 + s2 s1 −1
−1 1 ξ
s4 s3 − 1 1

⎞

⎠.

The above set can be partitioned into equivalence classes
according to the relation

N ∼ M ⇔ ∃F ∈ S4, F ′ ∈ GL(3,R) : N = F ′MF. (A8)

By Remark 1 the above equivalence relation preserves the
orbits of solutions of the linear systems. It is easy to check that
there are five equivalence classes represented by the following
matrices:

M1 =

⎛

⎝
1 + s1 s2 − 1
−1 1 + ξ
s3 −1 1 + s4

⎞

⎠,

M2 =

⎛

⎝
1 + s1 t1 − 1
t2 − 1 1 + s2

t3 − 1 1 + s3

⎞

⎠,
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M3 =

⎛

⎝
1 t1 s1 − 1

t2 − 1 1 + s2
s3 −1 1 + t3

⎞

⎠,

M4 =

⎛

⎝
1 t1 s1 − 1

s2 − 1 1 t2
t3 s3 − 1 1

⎞

⎠,

M5 =

⎛

⎝
1 ξ −1

s2 − 1 1 t2
t3 −1 1 + s3

⎞

⎠.

The solutions for M4 and M5 are OS4 (vs), OS4 (vb) (which have
been already excluded), and OS4 (vt t ), which will be treated in
Sec. 2.

The three remaining cases are given in the following. (1)
For M1 one has OS4 (vs), OS4 (vb), OS4 (vc), OS4 (vt t ), OS4 (v1),
and OS4 (v2), with

v1 =

⎛

⎝
α
α
β

⎞

⎠, v2 = α

⎛

⎝
3
1
2

⎞

⎠.

The systems in the same equivalence class are connected by the
permutations F ∈ {R±1,C,CR±1}. (2) For M2 one hasOS4 (v1)
and OS4 (v3), with

v3 =

⎛

⎝
0
α
β

⎞

⎠.

(3) For M3 one has OS4 (vs), OS4 (vb), OS4 (vc), OS4 (vt o),
OS4 (v1), and OS4 (v4), with

v4 =

⎛

⎝
α
β

α+β
2

⎞

⎠.

The systems in the same equivalence class are connected by
the permutations F ∈ {R2,C}.

We notice that v2 is a particular case of v4; then we can
just treat the latter. On the other hand, the vectors in OS4 (v3)
cannot be solutions for Mi with i ̸= 2; otherwise the orbit is
reduced to OS4 (vs), OS4 (vc), or OS4 (vto), which are ruled out.
The remaining case of OS4 (v3) can then be excluded via the
same analysis of case 2 in the previous section.

We end up with OS4 (v1) and OS4 (v4). We observe that
imposing that X2v1 is a solution for M1, M2, and M3 gives rise
to OS4 (vs), OS4 (vb), and OS4 (vc). As for OS4 (v4), imposing
that X2v4 is a solution leads to OS4 (vt t ), OS4 (vto), and
OS4 (v5) with v5 = α(5,3,1)T . However, it is easy to verify that
(I − X2R)v5 is uniquely determined as the sum of elements of
{0,OS4 (±v5)}, leading us to exclude this last case by virtue of
Proposition 6. Finally, as anticipated at the beginning of Sec. 1,
we can exclude (I − R)v = ±Av for A ∈ L and L ∼= A4,S4:
By direct inspection of the representation matrices of S4, it
turns out that this condition leads to OS4 (vc).

2. Exclusion of the truncated tetrahedron

In this section we make use of the three-dimensional
irreducible representation of A4 provided in Sec. 1 a in order to
exclude, by means of the unitarity conditions, the graph whose
primitive cell is the set of vertices of the truncated tetrahedron.

This also excludes the case where the inverses are contained in
S+. For notational convenience, we will use the Pauli matrix
notation X := X1, Y := X2, and Z := X3 and use the vector
wt t = α(1,1,3)T instead of vt t as a representative of the orbit
OA4 (vt t ). In the following we will also denote the elements
Gwt t (for G ∈ A4) by the shorthand G.

Let U be a faithful unitary and (generally projective)
representation of A4 in SU(2). We will define the transition
matrices as

A±G := UGA±IU
†
G, (A9)

with G ∈ A4. From the unitarity conditions (8), choosing h′′ =
2wt t , one derives the form

A±I := α±V |±⟩⟨±|, (A10)

with {|+⟩,|−⟩} the orthonormal basis, α± > 0, and V unitary.
Consider the following unitarity conditions:

AIA
†
W + A−WA

†
−I = 0, W = X,Y.

By multiplication on the right by AI we obtain

AIA
†
WAI = 0,

implying that UW must be antidiagonal in the {|+⟩,|−⟩} basis
or in {V |+⟩,V |−⟩}. On the other hand, from

AIA
†
−R + ARA

†
−I = 0

one gets

A−IA
†
RA−I = 0, (A11)

meaning that UR must be diagonal in {|+⟩,|−⟩} or
{V |+⟩,V |−⟩}.

Let us now suppose that UX is antidiagonal in {|+⟩,|−⟩}
and UY antidiagonal in {V |+⟩,V |−⟩} (or vice versa): Then,
since

URUXU
†
R = s1UY , URUY U

†
R = s2UZ (A12)

(s1 and s2 arbitrary signs) all of the UG for G = X,Y,Z would
be antidiagonal in one of the two bases, but this violates the
algebra of D2 ≡ {I,X,Y,Z} in A4. Accordingly, choosing the
{|+⟩,|−⟩} basis and imposing

UXUY = t1UY UX = t2UZ, U 2
G = t3I (A13)

(for G = X,Y,Z and t1,t2,t3 arbitrary signs), it is easy to see
that up to a change of basis we can always take

UG = iσG, G = X,Y,Z,

with |+⟩ and |−⟩ eigenvectors of σZ . This implies that, in
order to satisfy (A12), UR cannot have vanishing elements
in {|+⟩,|−⟩} and then by Eq. (A11) it must be diagonal in
{V |+⟩,V |−⟩}. Consequently, we must have

UR := V DV †, (A14)

where D = diag(eiϵ,e−iϵ) in {|+⟩,|−⟩} and e3iϵ is a sign. As a
consequence, using conditions (A13), one sees that the UX , UY ,
and UZ cannot have vanishing elements in {V |+⟩,V |−⟩}. This
in turn implies, by Eq. (A12), that V cannot have vanishing
elements in {|+⟩,|−⟩}.
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Let us now pose

V =
(

ρeiθ τeiϕ

−τe−iϕ ρe−iθ

)
: ρ,τ > 0, ρ2 + τ 2 = 1.

Multiplying the unitarity condition on the left by A
†
−I ,

AIA
†
RX + A−RXA

†
−I + ARA

†
Y + A−Y A

†
−R = 0,

and recalling that A
†
−IARA

†
Y = 0 by Eq. (A14), one has

A
†
−IA−RXA

†
−I + A

†
−IA−Y A

†
−R = 0.

Now substituting Eq. (A10) and using the definition (A9), the
nonvanishing matrix element of the previous identity in the
basis {|+⟩,|−⟩} is

⟨−|V †URXV |−⟩⟨−|U †
RX|−⟩

= −eiϵ⟨−|V †UY V |−⟩⟨−|U †
Y UR|−⟩.

Recalling the form of V given above and using the fact that
URX = t ′URUX (t ′ a sign) and that UR cannot have vanishing
elements in the basis {|+⟩,|−⟩}, for the previous equation we
finally obtain

cos(θ1 + ϕ1) = −i sin(θ1 + ϕ1)e2iϵ,

which has no solution.

3. Exclusion of Zn, Dn, Zn × Z2, and Dn × Z2, with n = 3,4,6

The aim of the present section is (1) to construct the real,
orthogonal, and three-dimensional faithful representations of
the groups L ∈ {Zn,Dn,Zn × Z2,Dn × Z2|n = 3,4,6} and (2)
to exclude all the graphs arising from L by means of the
unitarity conditions.

By the classification theorem for real matrices of finite order
given in Ref. [28], any matrix in O(3) of order n is similar to
one of the form

Rθ,s :=

⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0

0 0 s

⎞

⎠,

with θ = 2zπ
n

, z an integer, and s a sign. The matrices Rθ,s

represent the generators for the subgroups of order n = 3,4,6
in L. We can generate the orbits of L starting from the generic
vector (up to a rotation around the z axis) given by v1 =
(1,0,h)T . It is easy to show that the only matrices in O(3) of
order 2 commuting with Rθ,s for all θ and s are R0,t and Rπ,t :
They represent the generators of L/Zn for L ∼= Zn × Z2 or
L/Dn for L ∼= Dn × Z2. On the other hand, the involutions

Sϕ,r :=

⎛

⎝
cos ϕ sin ϕ 0
sin ϕ − cos ϕ 0

0 0 r

⎞

⎠

are the only ones such that Sϕ,rRθ,sS
−1
ϕ,r = Sϕ,rRθ,sSϕ,r =

R−1
θ,s . This implies that the Sϕ,r represent the generators for

the subgroups of reflections when L is a dihedral group.
Therefore, in general, the elements of OL(v1) lie on the two
circumferences which are parallel to the xy plane at heights
z = ±h.

In order to solve the unitarity conditions, it is necessary to
determine the paths with length 2 constructed by elements in

{0} ∪ OL(v1): By the above analysis, the problem is reduced
to a two-dimensional problem, since the form of the vectors
in OL(v1) is vi = (xi,yi, ± h)T := (cos χi , sin χi , ± h)T . Ac-
cordingly, it is easy to see that

vi ± vj = svl + tvp, vi ,vj ,vl ,vp ̸= 0 (s,t signs)

implies (xi,yi) = s(xl,yl) or (xi,yi) = t(xp,yp).
(a) Case n = 4. There are at least two inequivalent orthogo-

nal representations of L ∈ {Z4,D4,Z4 × Z2,D4 × Z2}, since
the element of order 4 can be represented by either Rπ/2,− or
Rπ/2,+. We will now analyze the two different cases.

In the first Rπ/2,− generates the four vectors

v1 =

⎛

⎝
1
0
h

⎞

⎠, v2 =

⎛

⎝
0
1

−h

⎞

⎠, v3 =

⎛

⎝
−1
0
h

⎞

⎠, v4 =

⎛

⎝
0

−1
−h

⎞

⎠.

The differences vi − vj ̸= 0 ∀i,j ∈ {1,2,3,4} are uniquely
determined as sums of elements of {0,OL(±v1)}. Accordingly,
there is a cyclic subgroup of order 4 (i.e., Z4) whose orbit
satisfies Eq. (14) and thus, invoking Proposition 3 (we recall
that the representation U must be faithful), we exclude the
representation containing Rπ/2,−.

Taking now Rπ/2,+, the orbit is

v1 =

⎛

⎝
1
0
h

⎞

⎠, v2 =

⎛

⎝
0
1
h

⎞

⎠, v3 =

⎛

⎝
−1
0
h

⎞

⎠, v4 =

⎛

⎝
0

−1
h

⎞

⎠.

We have that the vectors

v1 + v2, v1 − v3 (A15)

are uniquely determined as sum of elements of {0,OL(±v1)}.
Let us denote by R the matrix representing Rπ/2,+ in SU(2)
and proceed as in Sec. 2. From now on in the present section
we use the notation of Eq. (A9) and perform calculations
in the {|+⟩,|−⟩} basis. Multiplying the unitarity conditions
associated with the vectors in (A15) on the right by Av1 , we
obtain

Av1RA
†
−v1

R†Av1 = 0, Av1R
2A†

v1
R2†Av1 = 0. (A16)

By the first of conditions (A16), up to a change of basis we
can impose

R =
(

µ 0
0 µ∗

)
, R4 = sI

(s arbitrary sign); using the second condition, it follows that

R2 =
(

µ2 0
0 µ∗2

)
= V

(
0 ν

−ν∗ 0

)
V † (A17)

and thus necessarily µ2 ̸= µ∗2. Consider now the unitarity
condition

Av1A
†
v2

+ A−v2A
†
−v1

+ Av4A
†
v3

+ A−v3A
†
−v4

= 0.
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Multiplying this last equation by Av1 on the right and taking
the adjoint we get4

A†
v1

Av2A
†
v1

+ A†
v1

A−v4A
†
−v3

= 0,

which amounts to

α2
+

α2
−

⟨+|R†|+⟩⟨+|V †RV |+⟩

= −ν∗⟨−|R†|−⟩⟨+|V †R3V |−⟩. (A18)

Posing now

V †RV =
(

a b
−b∗ a∗

)
,

with a,b ̸= 0 since otherwise V †R2V cannot be antidiagonal
[see (A17)], we have that

V †R3V = (V †RV )(V †R2V ) =
(

a b
−b∗ a∗

)(
0 ν

−ν∗ 0

)
.

Accordingly, Eq. (A18) leads to

α2
+

α2
−

= −µ2,

which is impossible, since µ2 ̸= µ∗2.
(b) Cases n = 3,6. The representations of L ∈

{Zn,Dn,Zn × Z2,Dn × Z2|n = 3,6} must contain R2π/3,+,
which generates a subgroup K isomorphic to Z3: OK (v1) is
given by the following vectors:

vl =

⎛

⎜⎝
cos 2π

3 (l − 1)

sin 2π
3 (l − 1)
h

⎞

⎟⎠, l ∈ {1,2,3}.

We denote the representation matrix of R2π/3,+ in SU(2) by
U2π/3.

If v1 − v2 is uniquely determined as the sum of elements
of {0,OL(±v1)} (a particular case is given by the condition
h = 0), we can exclude this case by Proposition 6. Let us then
suppose that v1 − v2 is not uniquely determined as the sum of
elements of {0,OL(±v1)} (in particular h ̸= 0). Then, by the
above analysis, OL(v1) must contain

vl =

⎛

⎜⎝
− cos 2π

3 (l − 1)

− sin 2π
3 (l − 1)
h

⎞

⎟⎠, l ∈ {4,5,6}

(such that v1 − v2 = v5 − v4). Again, via the above arguments
on the representations of L, it is easy to see that v1 + v2 is
uniquely determined as the sum of elements of {0,OL(±v1)}.
Then, from the condition

Av1A
†
−v2

+ Av2A
†
−v1

= 0,

by multiplying on the right by Av1 , we get

Av1A
†
−v2

Av1 = 0.

4One has A−v2A
†
−v1

Av1 = 0, since A
†
−v1

Av1 = 0, and
Av4A

†
v3

Av1 = 0, since A†
v3

Av1 = R2A†
v1

R2†Av1 and A†
v1

R2Av1 =
α2

+|+⟩⟨+|V †R2V |+⟩⟨+|, and by Eq. (A17), ⟨+|V †R2V |+⟩ = 0.

Up to a change of basis U2π/3 = diag(eiϵ,e−iϵ) holds with
e3iϵ = ±1 and ϵ ̸∈ {0,π}. Let Uπ represent the element of L
mapping v1 to v4. This element is an involution and there are
only two cases (by inspection of the groups L here considered)

UπU2π/3U
†
π = sU2π/3 = s ′U

†
2π/3 (A19)

(s,s ′ signs). Recalling that the representation U ⊂ SU(2) is
faithful and U 3

2π/3 = tI (t a sign), it is easy to verify that
the previous two conditions on U2π/3 and Uπ are satisfied,
respectively, only if (1) Uπ is diagonal and (2) Uπ is
antidiagonal. Multiplying the unitarity condition associated
with the difference v1 − v4 by Av1 on the right,

Av1A
†
v4

+ A−v4A
†
−v1

= 0,

one also gets

Av1A
†
v4

Av1 = 0,

namely, either A
†
v4Av1 = 0 or Av1A

†
v4 = 0. This implies that

(a) V †UπV is antidiagonal or (b) Uπ is antidiagonal. In case
(a), multiplying the unitarity condition by Av1 on the right,

Av1A
†
v2

+ A−v2A
†
−v1

+ Av5A
†
v4

+ A−v4A
†
−v5

= 0,

it follows that

Av1A
†
v2

Av1 + A−v4A
†
−v5

Av1 = 0; (A20)

in case (b) multiplying the unitarity condition by A
†
v1 on the

right,

A†
v1

Av2 + A
†
−v2

A−v1 + A†
v5

Av4 + A
†
−v4

A−v5 = 0, (A21)

and taking the adjoint, it follows that

Av1A
†
v2

Av1 + A1A
†
−v5

A−v4 = 0. (A22)

Let us now pose

V †U2π/3V =
(

a b
−b∗ a∗

)
,

where a ̸= 0 since U 3
2π/3 = tI . In case (a), from (A20) one

then has

α2
+

α2
−

eiϵ = −⟨−|U †
πU2π/3Uπ |−⟩,

which cannot be satisfied in either case 1 or case 2. On the
other hand, in case (b), from (A22) one has

α2
+

α2
−

a∗eiϵ = −e−iϵ⟨−|V †U †
πU

†
2π/3UπV |−⟩,

and since Uπ is antidiagonal, one has

α2
+

α2
−

a∗e2iϵ = −⟨−|V †U2π/3V |−⟩ = −a∗,

which is impossible, since e3iϵ = ±1 for ϵ ̸∈ {0,π}.
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4. Remaining presentations arising from Z2, D2, and D2 × Z2

By the argument of Sec. 3, any matrix of order 2 in O(3) is
similar to

Ms,t :=

⎛

⎝
s 0 0
0 s 0
0 0 t

⎞

⎠,

with s,t signs. Accordingly, up to conjugation, any three-
dimensional orthogonal representation of a group L ∈
{Z2,D2,D2 × Z2} contains Ms,t . If s ̸= t , any matrix N of
order 2 in O(3) commuting with Ms,t is either Ms ′,t ′ or of the
form

N =

⎛

⎝
cos ϕ sin ϕ 0
sin ϕ − cos ϕ 0

0 0 r

⎞

⎠,

with r a sign. Since the two-dimensional block is a reflection
matrix, there exists a similarity transformation which maps it
to ±σz (and leaving Ms,t invariant). Thus the real, orthogonal,
and three-dimensional faithful representations of the groups
here considered contain just Ms,t and

Nr1,r2 :=

⎛

⎝
r1 0 0
0 −r1 0
0 0 r2

⎞

⎠.

The problem reduces to combine signs in Ms,t and Nr1,r2 to
give rise to faithful representations of L. It is easy to check that
they give rise to the integer lattice, the square lattice, or the
bcc lattice (one can include the inverses or not). Nevertheless,
there are two ways of providing a minimal generating set
(namely, such that S+ ̸= S−) for Z3 and whose Cayley graph
is associated with the bcc lattice. Such presentations are
both generated by D2: One is made with the vertices of a
tetrahedron; the second one corresponds to the vertices given

by the vectors

v0 =

⎛

⎝
1
1
h

⎞

⎠, v1 =

⎛

⎝
−1
−1
h

⎞

⎠, v2 =

⎛

⎝
−1
1
h

⎞

⎠, v3 =

⎛

⎝
1

−1
h

⎞

⎠.

We notice that excluding this solution allows us to exclude the
case including the inverses, namely, S+ = S−.

From the unitarity conditions one has

Av0A
†
v1

Av0 = 0, (A23)

Av0A
†
−vi

Av0 = 0, i = 2,3 (A24)

Av0A
†
−v1

+ Av1A
†
−v0

+ Av2A
†
−v3

+ Av3A
†
−v2

= 0. (A25)

From (A23) and the form of Eqs. (A9) and (A10) for the
transition matrices, we get U1 = iσ1 (we use the equivalent
notation for Pauli matrices σ0 := I , σ1 := σX, σ2 := σY , and
σ3 := σZ), up to a change of basis; from (A24) we end up with
the two cases (1) A

†
−v2

Av0 = A
†
−v3

Av0 = 0 and (2) A
†
−v2

Av0 =
Av0A

†
−v3

= 0, since Av0A
†
−v2

= Av0A
†
−v3

= 0 is forbidden in
order to respect the D2 algebra, while the case A

†
−v3

Av0 =
Av0A

†
−v2

= 0 is accounted for by the symmetry of the unitarity
conditions under the exchange 2 ↔ 3. In case 1, the condition
is incompatible with a faithful representation of D2 in SU(2). In
case 2, we have UG = iσG and U2 = V DV † with D diagonal,
implying that U2 = sV (iσ3)V † (s a sign). Then, up to a global
sign, one has

V = 1√
2

(
i s

−s −i

)
,

and from (A25) we obtain

Av0A
†
−v1

Av0 + Av2A
†
−v3

Av0 = 0,

which, using the form of Eqs. (A9) and (A10) for the transition
matrices along with the previous results, leads to −2α2

+α− =
0, contradicting the assumption α± ̸= 0.

[1] A. Ahlbrecht, A. Alberti, D. Meschede, V. B. Scholz, A. H.
Werner, and R. F. Werner, New J. Phys. 14, 073050
(2012).

[2] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88, 023617
(2013).

[3] D. González-Cuadra, E. Zohar, and J. I. Cirac, New J. Phys. 19,
063038 (2017).

[4] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl,
M. Dalmonte, and P. Zoller, Phys. Rev. Lett. 112, 120406
(2014).

[5] P. Arnault, G. Di Molfetta, M. Brachet, and F. Debbasch, Phys.
Rev. A 94, 012335 (2016).

[6] P. Arrighi, S. Facchini, and M. Forets, New J. Phys. 16, 093007
(2014).

[7] P. Arrighi, S. Facchini, and M. Forets, Quantum Inf. Process.
15, 3467 (2016).

[8] I. Siloi, C. Benedetti, E. Piccinini, J. Piilo, S. Maniscalco, M. G.
A. Paris, and P. Bordone, Phys. Rev. A 95, 022106 (2017).

[9] G. M. D’Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014).

[10] A. Bisio, G. M. D’Ariano, and P. Perinotti, Ann. Phys. (NY)
368, 177 (2016).

[11] A. Bisio, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 94,
042120 (2016).

[12] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[13] J. Watrous, in Proceedings of the IEEE 36th Annual Foundations

of Computer Science (IEEE, Piscataway, 1995), pp. 528–537.
[14] B. Schumacher and R. F. Werner, arXiv:quant-ph/0405174.
[15] P. Arrighi, V. Nesme, and R. Werner, J. Comput. Syst. Sci. 77,

372 (2011).
[16] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,

1687 (1993).
[17] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous,

in Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (ACM, New York, 2001), pp. 37–49.

[18] S. Severini, SIAM J. Matrix Anal. Appl. 25, 295 (2003).
[19] P. Raynal, Phys. Rev. A 95, 062344 (2017).
[20] J. Meier, Groups, Graphs and Trees (Cambridge University

Press, Cambridge, 2008).

062101-13

https://doi.org/10.1088/1367-2630/14/7/073050
https://doi.org/10.1088/1367-2630/14/7/073050
https://doi.org/10.1088/1367-2630/14/7/073050
https://doi.org/10.1088/1367-2630/14/7/073050
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1088/1367-2630/aa6f37
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1088/1367-2630/16/9/093007
https://doi.org/10.1088/1367-2630/16/9/093007
https://doi.org/10.1088/1367-2630/16/9/093007
https://doi.org/10.1088/1367-2630/16/9/093007
https://doi.org/10.1007/s11128-016-1335-7
https://doi.org/10.1007/s11128-016-1335-7
https://doi.org/10.1007/s11128-016-1335-7
https://doi.org/10.1007/s11128-016-1335-7
https://doi.org/10.1103/PhysRevA.95.022106
https://doi.org/10.1103/PhysRevA.95.022106
https://doi.org/10.1103/PhysRevA.95.022106
https://doi.org/10.1103/PhysRevA.95.022106
https://doi.org/10.1103/PhysRevA.90.062106
https://doi.org/10.1103/PhysRevA.90.062106
https://doi.org/10.1103/PhysRevA.90.062106
https://doi.org/10.1103/PhysRevA.90.062106
https://doi.org/10.1016/j.aop.2016.02.009
https://doi.org/10.1016/j.aop.2016.02.009
https://doi.org/10.1016/j.aop.2016.02.009
https://doi.org/10.1016/j.aop.2016.02.009
https://doi.org/10.1103/PhysRevA.94.042120
https://doi.org/10.1103/PhysRevA.94.042120
https://doi.org/10.1103/PhysRevA.94.042120
https://doi.org/10.1103/PhysRevA.94.042120
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
http://arxiv.org/abs/arXiv:quant-ph/0405174
https://doi.org/10.1016/j.jcss.2010.05.004
https://doi.org/10.1016/j.jcss.2010.05.004
https://doi.org/10.1016/j.jcss.2010.05.004
https://doi.org/10.1016/j.jcss.2010.05.004
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1137/S0895479802410293
https://doi.org/10.1137/S0895479802410293
https://doi.org/10.1137/S0895479802410293
https://doi.org/10.1137/S0895479802410293
https://doi.org/10.1103/PhysRevA.95.062344
https://doi.org/10.1103/PhysRevA.95.062344
https://doi.org/10.1103/PhysRevA.95.062344
https://doi.org/10.1103/PhysRevA.95.062344


D’ARIANO, ERBA, AND PERINOTTI PHYSICAL REVIEW A 96, 062101 (2017)

[21] A. Montanaro, Quantum Inf. Comput. 7, 093 (2007).
[22] J. Kempe, Contemp. Phys. 44, 307 (2003).
[23] G. M. D’Ariano and P. Perinotti (unpublished).
[24] A. Bisio, G. M. D’Ariano, M. Erba, P. Perinotti, and A. Tosini,

Phys. Rev. A 93, 062334 (2016).

[25] G. Mackiw, Math. Mag. 69, 356 (1996).
[26] K.-I. Tahara, Nagoya Math. J. 41, 169 (1971).
[27] G. M. D’Ariano, M. Erba, P. Perinotti, and A. Tosini, J. Phys.

A: Math. Theor. 50, 035301 (2017).
[28] R. Koo, Math. Mag. 76, 143 (2003).

062101-14

https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1103/PhysRevA.93.062334
https://doi.org/10.1103/PhysRevA.93.062334
https://doi.org/10.1103/PhysRevA.93.062334
https://doi.org/10.1103/PhysRevA.93.062334
https://doi.org/10.2307/2691281
https://doi.org/10.2307/2691281
https://doi.org/10.2307/2691281
https://doi.org/10.2307/2691281
https://doi.org/10.1017/S002776300001415X
https://doi.org/10.1017/S002776300001415X
https://doi.org/10.1017/S002776300001415X
https://doi.org/10.1017/S002776300001415X
https://doi.org/10.1088/1751-8121/50/3/035301
https://doi.org/10.1088/1751-8121/50/3/035301
https://doi.org/10.1088/1751-8121/50/3/035301
https://doi.org/10.1088/1751-8121/50/3/035301
https://doi.org/10.2307/3219311
https://doi.org/10.2307/3219311
https://doi.org/10.2307/3219311
https://doi.org/10.2307/3219311

