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SU„1,1… tomography
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We present a tomographic reconstruction procedure that exploits the symmetry of the SU~1,1! group existing
in some physical systems. The tomographic algorithm is derived analytically and the convergence of the
procedure is tested on Monte Carlo simulated data.
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I. INTRODUCTION

Optical homodyne tomography is a well-establish
method for measuring the quantum state of the radiation fi
@1–4#, and, more generally, for estimating the expectat
value of arbitrary observables of the field@5# also for any
number of field modes@6#. The success of optical homodyn
tomography has stimulated the design of state-reconstruc
procedures in other fields, such as in atomic@7#, molecular
@8#, and ion-trap@9# physics. Homodyne tomography allow
the estimation of the ensemble average of any fi
operator—including the matrix elements of the quant
state— by averaging special functions of the field quad
tures with varying phase. These are the analogs of all lin
combinations of position and momentum of a harmonic
cillator. The set of field quadratures is an example of aquo-
rum of observables, namely, a ‘‘complete’’ set of noncom
muting observables which are sufficient for determining
quantum state of the system. With the only exception of
method of Ref.@10#—in which the tomographic reconstruc
tion is achieved through measurement of the photon num
probability of the ‘‘displaced’’ state—no other quorum, di
ferent from the set of field quadratures, has been consid
in the optical domain~the ‘‘self-homodyne’’ tomography@11#
is also based on quadrature measurements, although no
homodyning!. Indeed, a non-quadrature-based tomograp
method would be very interesting in comparison with hom
dyne tomography, in order to compare the efficiency of d
ferent quorums, and to analyze the role played by thes
the tomographic reconstruction.

In this paper a totally different tomographic reconstru
tion procedure is proposed. It is based on the general th
given in Refs. @12–14#. This reconstruction exploits th
SU~1,1! group symmetry@15# and its infinite dimensiona
unitary irreducible representations in order to derive the p
tern functions. Once these have been obtained, the tomo
phic procedure can be derived immediately, since it sim
consists in averaging the pattern functions over the exp
mental results.

To test the method, we present numerical results for a
of computer-simulated state-reconstruction experiments,
responding to the reconstruction of different quantum sta
As we will see, there is always an excellent quantitat
agreement between theoretical and experimental matrix
ments, with unbiased statistical errors that can be arbitra
reduced for increasing number of data.
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For the sake of illustrating the method, two examples
physical systems with SU~1,1! symmetry are presented an
the procedure for performing the tomographic reconstruct
experiment is given. These two systems, based on con
tional photodetection preceded by parametric amplificati
correspond to the manifolds of the well-known single-mo
and two-mode squeezed states.

After a short review of the general quantum tomograp
approach in Sec. II, we present the SU~1,1! tomographic pro-
cedure in Sec. III: first we give the tomographic protocol a
abstract experimental scheme expressed in terms of oper
of the su~1,1! algebra, and then we discuss the result of sim
lated experiments and give the analytic derivation of
method. Two physical examples of systems with the requi
symmetry are also given. Section IV concludes the pa
with a summary of the main results.

II. GENERAL TOMOGRAPHY

In this section we briefly review the general quantum
mography method of Refs.@13,14#. The purpose of quantum
tomography is to reconstruct the expectation value of a
operatorA acting on the system Hilbert spaceH, using only
measurement outcomes of a set, called a quorum, of obs
ablesC(x) @i.e., C(x) for fixed x has spectral orthonorma
resolution#. By measuringC(x) for variousx, it is possible to
reconstruct the expectation value ofA starting from the fol-
lowing resolution of the identity on the operator space:

A5E
X
dm~x!Tr@AB†~x!#C~x!, ~1!

where the setB(x) is the dual set ofC(x) under the Hilbert-
Schmidt scalar product, andm(x) denotes a suitable mea
sure. In generalx5(x1 ,x2 , . . . ) denotes a vector of param
eters, withxi either continuous or discrete, and the notati
*dm(x) denotes multiple integrals/sums.

The dual coupleB(x) andC(x) satisfy the orthogonality
relation

dmkdnl5E
X
dm~x!^muB†~x!un&^ l uC~x!uk&, ~2!

which, for $um&% denoting an orthonormal basis ofH, is just
a restatement of the tomography identity~1!. Alternatively, if
$um&% spans only a subspace ofH, then Eq.~1! will hold
©2001 The American Physical Society05-1
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only for operators restricted to this subspace. As we will s
this is the case of the SU~1,1! tomography in some of its
physical realizations.

Once a dual coupleB(x) andC(x) has been found, one
can obtain the expectation value of an arbitrary operatoA,
by taking the expectation of both members of Eq.~1!, i.e.,

^A&5(
n
E

X
dm~x!pn~x!ln~x!Tr @B†~x!A#, ~3!

where pn(x) is the probability of obtaining thenth eigen-
value ln(x) when measuringC(x), i.e., pn(x)5^nu%un&
~with % the density matrix of the system!. The quantity
ln(x)Tr @B†(x)A#, defined as a pattern function, can be an
lytically evaluated, while the probabilitypn(x) must be de-
termined experimentally. Notice that often~such as in the
cases described in this paper! it is possible to obtain the
whole quorum through a unitary operatorU(x) depending on
the parameterx acting on a single observableO, i.e.,

C~x!5U†~x!OU~x!. ~4!

In this case, by calculating Tr@C(x)%# on a basis of eigen
statesun& of O, one finds that

^A&5(
n
E

X
dm~x!pn~x!onTr @B†~x!A#, ~5!

where herepn(x)5^nuU(x)%U†(x)un& is the probability of
obtaining the eigenvalueon , when measuring the observab
O on the state% evolved by the unitary operatorU(x).

III. SU „1,1… TOMOGRAPHY

A. Tomography protocol

In this subsection we give the tomographic reconstruct
procedure. Some simulated tomographic experiments
presented and discussed. The mathematical derivation o
reconstruction algorithm~7! will be postponed to the follow-
ing subsection~Sec. III B!. The system on which the proce
dure is to be applied is described in terms of the abst
operators of the su~1,1! algebra defined by Eq.~6!. Its real-
ization in practice can change completely from case to c
depending on the physical realization of the su~1,1! algebra.
One then only has to substitute the appropriate system
erators and measurement results in the formulas given
in order to obtain the reconstruction procedure suited to
particular system. For the sake of illustration, a couple
simple idealized physical systems are given at the end of
section.

The Lie algebra su~1,1! of the SU~1,1! group is spanned
by the operatorsK1 ,K2 , andKz which are defined by the
commutation relations

@K1 ,K2#522Kz , @Kz ,K6#56K6 , ~6!

Kx[
1

2
~K11K2!, Ky[2

i

2
~K12K2!.
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The Casimir invariant operator that labels all the unitary
reducible representations of the group is given by (Kz)

2

2 1
2 (K1K21K2K1)5k(k21), where the eigenvaluek is

also called the Bargmann index.
The general SU~1,1! tomographic identity correspondin

to Eq. ~5!, for the reconstruction of the expectation value
the operatorA on an ensemble in the state%, will be
throughly derived in the following subsection. It is given b

^A&5
1

p (
j 50

` E
0

2p

dwE
0

`

du tanh~u!^ j uei (u/2)(e2 iwK12eiwK2)%

3e2 i (u/2)(e2 iwK12eiwK2)u j &

3Tr@A$~21!Kzeu(eiwK12e2 iwK2),Kz%1#~21!k1 j , ~7!

where $u j &% is the orthonormal basis of eigenvectors ofKz
corresponding to eigenvaluek1 j , and $•,•%1 denotes
the anticommutator. In Eq. ~7! the quantity

^ j uei (u/2)(e2 iwK12eiwK2)%e2 i (u/2)(e2 iwK12eiwK2)u j & is the
probability distribution of the eigenvaluej 1k obtained
when measuring the observableKz on the input state% that
has undergone an evolution described by the unitary oper

U~u,w![ei (u/2)(e2 iwK12eiwK2). ~8!

The experimenter must repeatedly measure the observ
Kz on different ensemble elements after evolving each
them with the unitary operatorU(u,w), varying the param-
etersu and w at each measurement.@As we will see in the
following for the example of the electromagnetic fie
SU~1,1! reconstruction scheme, this amounts to measur
the number of photons after having squeezed the radia
for varying values of the squeezing amplitude and phase#

In practice, the unbounded real amplitudeuP@0,̀ ) must
be chosen randomly weighted with a cutoff distributio
p(u)5(1/l )exp(2wu)tanh(u), wherew is a constant andl is
a normalization factor~an example is given in Fig. 1!, while
w can be chosen randomly in@0,2p# with uniform probabil-

FIG. 1. Histogram for the squeezing amplitude parameteu
used in the reconstruction of Fig. 2 below. The continuous supe
posed line is the theoretical probability distributionp(u)
5(1/l )exp(2wu)tanh(u). Herew51.25.
5-2
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SU~1,1! TOMOGRAPHY PHYSICAL REVIEW A64 033805
ity. The parametersu and w thus obtained are used to tun
the experimental apparatus so that the input state is evo
by the operatorU(u,w). Then the measurement ofKz is
performed, yielding thei th experimental resultmi(u i ,w i) for
Kz2k. The expectation~7! is estimated through the averag
on N measurements,

^A&5
1

N (
i 50

N

~21!k1mi (u i ,w i )2l exp~wu i !

3Tr @A$~21!Kz eu i (e
iw iK12e2 iw iK2),Kz%1#, ~9!

where the functionl exp(wu) is introduced in order to com
pensate the cutoff weighting. The parameterw must be cho-
sen sufficiently large to obtain a distribution of the squeez
amplitudeu in the allowed experimental range, and at t
same time not too large, otherwise only too smallu values
will result, and a too large number of experimental da
would be needed for the tomographic reconstruction. No
that any normalized decaying weight function can be use
place of the negative exponential used here.

In Figs. 2 and 3 we show some Monte Carlo simulatio
of the proposed method, where the measurement re
mi(u,w) have been simulated from the theoretical proba
ity distribution of the input state evolved byU(u,w). The
simulation of Fig. 2 refers to the state reconstruction o
system in a Perelomov coherent state@16# defined as

ua&[
~12uau2!k

A~2k21!!
(
n50

` A~2k211n!!

n!
anun&. ~10!

In Fig. 3 the simulation of the state reconstruction of
ensemble in the state (uq&1ur &)/A2, i.e., in a coherent su
perposition of two eigenstates ofKz , is given and a compari
son is made between experiments carried out with differ
weight parametersw. Notice how, with the same number o
data, a better reconstruction is performed with lowerw,
which corresponds to higher available squeezing amplitu
u.

The procedure that has been described is unbiased, s
no systematic errors are introduced. Only statistical err
are present and can be made arbitrarily small by increa
the number of experimental data.

We now analyze two experimental setups in order to
lustrate how, starting from the tomographic formulas giv
here, one may obtain the tomography suited to a partic
system. They employ the SU~1,1! reconstruction formula~7!
for the tomographic reconstruction of a two-mode radiat
field and of a single-mode radiation field, respectively, a
are based on parametric amplifiers and photodetectors
this paper, ideal setups only are considered as example
application of SU~1,1! tomography; an extensive analysis
nonunit quantum efficiency and more realistic setups will
considered in a subsequent paper.

The first setup is a two-mode setup, which employs
following realization of SU~1,1! through the radiation opera
tors:
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K1>a†b†, K2>K1
† , Kz>

1

2
~a†a1b†b11!, ~11!

where a and b are the annihilation operators for the tw
radiation modes. The Casimir invariant operator is given
1
2 (ua†a2b†bu11). The set$u j &% of eigenvectors ofKz spans
only the subspace of the two-mode Hilbert space in wh
the photon difference in the two modes is fixed and is giv
by 2k21. Thus, only the operatorsA acting on this subspac
can be reconstructed with such setup, and one can re
struct the radiation state only if the difference between
photons in the two modes is fixed. HereKz is the observable
‘‘sum of photons’’ in the two modes and can be measured
two photodetectors. The operatorU(u,w) describes a nonde
generate parametric amplifier~or phase insensitive ampli
fier!, whereu andw are the squeezing amplitude and pha

FIG. 2. Monte Carlo simulation of the proposed experiment
the reconstruction of the operatorA5um&^nu, namely, the measure
ment of the system density matrix elements%nm . The system is in
a Perelomov coherent stateua&, with a50.7. In this simulationk
53/4 and 23105 measurements ofKz divided into 20 statistical
blocks have been simulated. In~a! the diagonalp(m) of the density
matrix is plotted with the statistical error bars and compared to
theoretical value. In~b!, the absolute values of the density matr
elementsu%nmu are plotted.
5-3
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FIG. 3. Comparison of identical simulated experiments for the measurement of the density matrix elements%nm , carried out using
different weight parametersw in the probability distribution for the squeezing amplitudeu. The system is in the stateuc&5(uq&1ur &)/A2,
with q51 andr 56. Herek54/5 and, as in the previous example, 23105 measurements ofKz divided into 20 statistical blocks have bee
simulated.~a! and~b! show the diagonal matrix elements with their theoretical values, and~c! and~d! show the absolute values of all matri
elements. The simulation in~a! and ~c! is obtained with a weightw52.8 ~corresponding tou varying in the interval@0,;1.2#), while the
simulation in~b! and ~d! is obtained withw50.75 ~corresponding tou varying in @0,;4#.
.

e

pace

tor
respectively, i.e.,U(u,w)5exp@ 1
2u(a†b†eiw2abe2iw)#. In Fig.

4 the block diagram for this experiment is presented.
The second setup, whose block diagram is given in Fig

is a single-mode setup that employs the following SU~1,1!
realization:

K1[
1

2
~a†!2, K2[K1

† , Kz[
1

2 S a†a1
1

2D , ~12!
03380
5,

where a is the annihilation operator of the mode, andk
5 1

4 , 3
4 . Notice that this realization is actually a projectiv

representation of SU~1,1!. It allows one to reconstruct only
the operators that act on the subspace of the radiation s
constituted by the states with fixed~even or odd! parity in the
number of photons. In this case, the observableKz is related
to the number of photons in the mode, while the opera
U(u,w) describes a degenerate parametric amplifier~or
5-4
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SU~1,1! TOMOGRAPHY PHYSICAL REVIEW A64 033805
phase sensitive amplifier!, i.e., U(u,w)5exp@ 1
4u(a†2e2iw

2a2eiw)#.

B. Tomographic reconstruction procedure

In this subsection we derive the reconstruction proced
~7! that allows the tomography protocol described in the p
vious subsection. The derivation is obtained in the fram
work of the general tomography theory@13,14#, which was
briefly reviewed in Sec. II.

As we will see, a resolution of the identity of the form~2!
can be obtained by making use of the measure

dm~g![
d2g

p

tanhugu
ugu

~13!

~whereg varies over the whole complex plane!, and by using
the operators

C~g![ exp@gK12ḡK2#, ~14!

B~g![$C~g!,Kz%15C~g!Kz1KzC~g!.

These operators are defined so that, by introducing a b
$un&% of eigenstates of the operatorKz @i.e., Kzun&5(k
1n)un&, n50,1, . . . ,̀ #, we have

^nuC~g!um&5N^nuB~g!um&5^nuexp@gK12ḡK2#um&

~15!

FIG. 4. Block diagram for the two-mode setup for the tomog
phic reconstruction of SU~1,1! states. The sum photodetection sta
is denoted byD, while the nondegenerate parametric amplifier
labeled PIA.

FIG. 5. Block diagram of the single-mode setup for the tomo
raphic reconstruction. Here PSA denotes the degenerate param
amplifier andD the photodetector.
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re
-
-

sis

with N5(2k1m1n)21.
We now show that the resolution of the identity of th

form ~2! based on the operatorsC(g) and B(g) defined in
Eq. ~14! follows from the orthogonality of some polynomia
obtained from their matrix elements. These polynomials
defined by

^muegK12ḡK2un&5^muezK1~12uzu2!Kze2 z̄K2un&

[~21!nzm2n~12uzu2!kAn!G~2k1m!

m!G~2k1n!

3Sn
(2k21,m2n)~ uzu2!, ~16!

wherez[(g/ugu)tanhugu. Then-degree polynomialSn
(a,d)(r)

is given by

Sn
(a,d)~r![(

k
~21!k1nS a1n1d1k

k D S n1d

k1dD rk,

~17!

wherek takes all the values such that the binomials are n
zero, i.e., max(0,2d)<k<n. Notice thatSn

(a,d)(r) is a gen-
eralization of the Jacobi polynomials, since by using t
property

Sn
(a,m2n)~r!5rn2m

m!G~a1n11!

n!G~a1m11!
Sm

(a,n2m)~r!, ~18!

we can write

Sn
(a,m2n)~r!

5H Pn
(a,m2n)~2r21! for m>n

Pm
(a,n2m)~2r21!rn2m

m!G~a1n11!

n!G~a1m11!
for m<n,

~19!

where Pn
(a,b)(x), with a.21 and b.21, is the Jacobi

polynomial of degreen @17#.
The orthogonality relation for the polynomialsSn

(a,d)(r)
can be obtained either from the orthogonality relations of
Jacobi polynomials through Eq.~19! or from the necessary
condition ~22! for the orthogonal polynomials. Thus we ob
tain

1

N 8
E

0

1

dr~12r!ardSn
(a,d)~r!Sl

(a,d)~r!5dnl , ~20!

with the normalization

N 85
~n1d!!G~a1n11!

n!G~a1d1n11!~a1d12n11!
. ~21!

Incidentally, notice that a useful recursion may be obtain
from the necessary condition@17# for orthogonal polynomi-
als, namely, a system ofn-degree polynomialspn(r) sat-
isfying the recursion

-

-
tric
5-5
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~Anr1Bn!pn~r!2Cnpn21~r!5pn11~r! ~22!

with An ,Cn>0 is an orthogonal system. One can verify that the recursion~22! is satisfied forpn(r)5Sn
(a,d)(r), by choosing

An5
~a12n1d11!~a12n1d12!

~n11!~a1d1n11!
, ~23!

Bn52
~a12n1d11!@a~2n1d11!12n~n1d11!1d1d2#

~a1d1n11!~n11!~a1d12n!
, ~24!

Cn5
~d1n!~n1a!~a12n1d12!

~n11!~a1n1d11!~a12n1d!
. ~25!

By making use of the above relations, we may derive the orthogonality condition~2! for SU~1,1!. In fact, we see that

1

NE
C

d2g

p

tanhugu
ugu ^muegK12ḡK2un&^ l ue2gK11ḡK2uk&

5
~21!n1 l

N An!k!G~a1m11!G~a1 l 11!

m! l !G~a1n11!G~a1k11!
E d2z

p
~12uzu2!azm2n1 l 2kSn

(a,m2n)~ uzu2!Sk
(a,l 2k)~ uzu2!

5
~21!n1 l

2pN An! l !G~a1m11!G~a1k11!

m!k!G~a1n11!G~a1 l 11!
E

0

2p

dweiw(m2n1 l 2k)E
0

1

dr~12r!ar (m2n1k2 l )/2Sn
(a,m2n)~r!Sl

(a,k2 l )~r!

5dmkdnl , ~26!
a

i
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m,
with a[2k21, z[(g/ugu)tanhug u, g[r1/2eiw, and

N5
n!G~a1m11!N 8

m!G~a1n11!
5

1

a1m1n11
, ~27!

and where the double integral ond2z is to be performed on
the unit circle. Equation~26! guarantees the existence of
tomographic identity of the form~1!, with B(g) and C(g)
given by Eq.~14!.

Using the identity resolution~26!, we can now obtain the
SU~1,1! tomographic reconstruction procedure as given
Eq. ~3!, namely,

^A&5E
C

d2g

p

tanhugu
ugu

Tr @AB†~g!#Tr @%C~g!#, ~28!

where% is the system density matrix andA is an arbitrary
system operator.

How can this identity be used to obtain the SU~1,1! to-
mography? The obvious way to obtain a reconstruction p
cedure of the form~3! would be to devise a measureme
procedure for the Hermitian operatori (gK12ḡK2). How-
ever, an apparatus to measure such observables is unfea
It would be much better to measure the operatorKz , which,
as we have shown, is obtained both in the single-mode an
the two-mode systems through photodetection. We will n
show how the tomographic identity we found can be e
ployed, requiring the measurement ofKz on a state that ha
been evolved by the unitary operator exp(gK12ḡK2), i.e.,
we use a reconstruction procedure of the form~5!. For ex-
03380
n
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ample, in the single-mode and two-mode realizations giv
above, this resorts to squeezing the input state and then
forming a photodetection.@Of course, in any physical situa
tion in which i (gK12ḡK2) is easily measurable, then Eq
~28! can be directly employed for the SU~1,1! tomography.#

To this end, let us regardKx , Ky , andKz as elements of
su~1,1!, that is, as 232 complex matrices, and the expone
tial map ‘‘exp’’ as a function from su~1,1! to SU~1,1!. In
doing so,

Kx52
i

2
s1 , Ky52

i

2
s2 , Kz5

1

2
s3 , ~29!

where s i are the Pauli matrices. DenoteKW [(Kx ,Ky ,Kz),
nW [(sinhu cosw,sinhu sinw,coshu), and nW'>(sinw,2cosw,
0); then one can easily check that

exp@2i ~bKx1aKy!#~21!Kz5~21!nW •KW ~30!

5exp~2 iunW'•KW !~21!Kz exp~ iunW'•KW !, ~31!

for all g[a1 ib[uei (p2w) in the complex plane.
Let U be the unitary representation of SU~1,1! with Barg-

mann indexk. As a consequence of the Stone theore
5-6
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one has eihKs5Uexp(hKs)
, with s5x,y,z, and C(g)

5Uexp[2i(bKx1aKy)]
, where, with slight abuse of notation, w

denote by the same symbolKs both the 232 matrix and the
self-adjoint operator acting on the Hilbert space of the s
tem. Hence, since Eqs.~30! and~31! hold at group level and
U is a representation, one has

Tr @C~g!~21!Kz%#5(
j 50

`

^ j ueiunW'•KW %e2 iunW'•KW u j &

3~21!(k1 j ), ~32!

where^ j ueiunW'•KW %e2 iunW'•KW u j & is the probability of obtaining
the resultj 1k, when measuring the operatorKz on the input
state% evolved by the unitary operatorU(u,w)5eiunW'•KW ,
i.e., the stateeiunW'•KW %e2 iunW'•KW .

Moreover, it is immediately clear that the orthogonal
relation ~26! is valid also if we take, in place ofC(g) and
B(g), the operatorsC8(g) andB8(g) defined as

C8~g![e(gK12ḡK2)~21!Kz,
~33!

B8~g![$C8~g!,Kz%1 .

Thus, rewriting the tomographic identity~28! with C8(g)
andB8(g), and using Eq.~32!, we find the SU~1,1! tomog-
raphy reconstruction procedure, i.e.,

^A&5
1

p (
j 50

` E
0

2p

dwE
0

`

du tanh~u!^ j ueiunW'•KW %e2 iunW'•KW u j &

3Tr @AB8†~u,w!#~21!k1 j , ~34!
s

G.

d
.

er
ie

k,

tt

03380
-

from which Eq.~7! follows immediately.

IV. CONCLUSIONS

In this paper we have introduced, derived, and num
cally tested a quantum tomographic reconstruction proced
based on SU~1,1! symmetry. The tomographic algorithm ha
been derived using the general method of Refs.@13,14#, and
the orthogonality relation of the SU~1,1! tomography turns
out to be a generalization of the Jacobi polynomial ortho
nality identity. The method has been tested on a set of c
puter simulated experiments, corresponding to the rec
struction of different quantum states. Excellent agreem
between theoretical and experimental simulated matrix
ments was found, within perfectly unbiased statistical erro
Two examples of physical systems to illustrate this rec
struction procedure were given: the setups are based on
SU~1,1! symmetry of parametric amplification of two-mod
and single-mode electromagnetic fields.
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