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We present a tomographic reconstruction procedure that exploits the symmetry of(th&) $tbup existing
in some physical systems. The tomographic algorithm is derived analytically and the convergence of the
procedure is tested on Monte Carlo simulated data.
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[. INTRODUCTION For the sake of illustrating the method, two examples of
physical systems with SW,1) symmetry are presented and
Optical homodyne tomography is a well-establishedthe procedure for performing the tomographic reconstruction
method for measuring the quantum state of the radiation fiel@xperiment is given. These two systems, based on conven-
[1-4], and, more generally, for estimating the expectationtional photodetection p_receded by parametric amplification,
value of arbitrary observables of the figlf] also for any correspond to the manifolds of the well-known single-mode
number of field modefs]. The success of optical homodyne @nd two-mode squeezed states. _
tomography has stimulated the design of state-reconstruction After a short review of the general quantum tomographic
procedures in other fields, such as in atofifi; molecular ~ @Pproach in Sec. Il, we present the &\1) tomographic pro-
[8], and ion-trap9] physics. Homodyne tomography allows cedure in Sec..III: first we give the tomogrqphic protocol and
the estimation of the ensemble average of any fielg@bstract experimental scheme exprgssed in terms of operators
operator—including the matrix elements of the quantumPf the sul,1) algebra, and then we discuss the result of simu-
state— by averaging special functions of the field quadralatéd experiments and give the analytic derivation of the
tures with varying phase. These are the analogs of all linedi€thod. Two physical examples of systems with the required
combinations of position and momentum of a harmonic osSymmetry are also given. Section IV concludes the paper
cillator. The set of field quadratures is an example olua- ~ With @ summary of the main results.
rum of observables, namely, a “complete” set of noncom-
muting observables which are sufficient for determining the Il. GENERAL TOMOGRAPHY
guantum state of the system. With the only exception of the
method of Ref[10]—in which the tomographic reconstruc-
tion is achieved through measurement of the photon numb
probability of the “displaced” state—no other quorum, dif-
ferent from the set of field quadratures, has been consider
in the optical domairithe “self-homodyne” tomographj/i1]

In this section we briefly review the general quantum to-
({pography method of Ref§13,14]. The purpose of quantum
omography is to reconstruct the expectation value of any
e(?]oeratorA acting on the system Hilbert spagg using only
measurement outcomes of a set, called a quorum, of observ-

is also based on quadrature measurements, although not \ﬁQIeSC_(X) [i.e., C(x) i‘or fixed x has_ speciral ortho_normal
homodyning. Indeed, a non-quadrature-based tomographiceselution: By measuringC(x) for various, itis possible to
method would be very interesting in comparison with homo-reC(.)nStrUCt th? expectat_lon v.alue/@ fstarting from the fol-
dyne tomography, in order to compare the efficiency of dif-lowing resolution of the identity on the operator space:
ferent quorums, and to analyze the role played by these in
the tomographic reconstruction. A:f du(x)TABT(x)]C(x), (1)
In this paper a totally different tomographic reconstruc- X
tion procedure is proposed. It is based on the general theory _ .
given in Refs.[12-14. This reconstruction exploits the Where the seB(x) is the dual set o€(x) under the Hilbert-
SU(1,1) group symmetry{15] and its infinite dimensional Schmidt scalar product, and(x) denotes a suitable mea-
unitary irreducible representations in order to derive the patSure. In generak=(xy,x,, .. .) denotes a vector of param-
tern functions. Once these have been obtained, the tomogrgters. withx; either continuous or discrete, and the notation
phic procedure can be derived immediately, since it simply/ dx(x) denotes multiple integrals/sums.
consists in averaging the pattern functions over the experi- The dual couplé3(x) andC(x) satisfy the orthogonality
mental results. relation
To test the method, we present numerical results for a set
of computer-simulated state-reconstruction experiments, cor- — f t
responding to the reconstruction of different quantum states. Ok Xd,u(x)<m|B OInKICEOlk), @
As we will see, there is always an excellent quantitative
agreement between theoretical and experimental matrix elevhich, for{|m)} denoting an orthonormal basis #f, is just
ments, with unbiased statistical errors that can be arbitrarily restatement of the tomography identity. Alternatively, if
reduced for increasing number of data. {|m)} spans only a subspace ®f, then Eq.(1) will hold

1050-2947/2001/68)/033805%7)/$20.00 64 033805-1 ©2001 The American Physical Society



G. M. D’ARIANO, E. De VITO, AND L. MACCONE PHYSICAL REVIEW A64 033805

only for operators restricted to this subspace. As we will see, e B .
this is the case of the SW,1) tomography in some of its
physical realizations.

Once a dual coupl8(x) andC(x) has been found, one
can obtain the expectation value of an arbitrary operator

by taking the expectation of both members of En, i.e., P(3)

(A)=§ JXdM(X)pn(X)M(X)TF[BT(X)A], ) - e

I
oo b b s

where p,(x) is the probability of obtaining theth eigen- 1||||
value \,(x) when measuringC(x), i.e., pa(X)={(n|e|n)
(with o the density matrix of the systemThe quantity
A (X) Tr[BT(x)A], defined as a pattern function, can be ana-

Iyticalllly evaluatgd, while the prObab“im”(X) must b_e de- FIG. 1. Histogram for the squeezing amplitude parameter
termined eXPe”m?ma'_'y- NOt',Ce, that ofte{BUCh as '_n the used in the reconstruction of Fig. 2 below. The continuous superim-
cases described in this papet is possible to obtain the ,seq |ine is the theoretical probability distributiop(6)
whole quorum through a unitary operatd(x) depending on = (1/)exp(wé)tanh(@). Herew=1.25.

the parametex acting on a single observab® i.e.,

. The Casimir invariant operator that labels all the unitary ir-
C(x)=U'(x)0U(x). (4)  reducible representations of the group is given )¢
_ _ _ . —3(K.K_+K_K,)=«(k—1), where the eigenvalue is
In this case, by calculating TC(x)¢] on a basis of eigen- 5|sq called the Bargmann index.

stategn) of O, one finds that The general SW,1) tomographic identity corresponding
to Eq. (5), for the reconstruction of the expectation value of

A) = du(x)pa(x)0.Tr[BT(X)A], 5 the operatorA on an ensemble in the state, will be
(A) ; Lc HX)Pa(x)0nTr (B (x)A] 2 throughly derived in the following subsection. It is given by

where herep,(x)=(n|U(x)eUT(x)|n) is the probability of 1« (27 * o Ciew e
obtaining the eigenvalue, , when measuring the observable (A)= P ]ZO fo d“’L détanh(6)(jle'("A T meTK )0
O on the statep evolved by the unitary operatds(x). _ _
Xefi(€/2)(e_"PK+fe""K,)|j>
Ill. SU(1,1)) TOMOGRAPHY e 1)Kze0(e"”|<+—ef'“’K—),KZh](_ 1)"+j, @
A. Tomography protocol

In this subsection we give the tomographic reconstructiowhere{|j)} is the orthonormal basis of eigenvectorskof
procedure. Some simulated tomographic experiments aigorresponding to eigenvalug+j, and {-,-}. denotes
presented and discussed. The mathematical derivation of tiBe ~ anticommutator.  In  Eq. (7) the quantity
reconstruction algorithri7) will be postponed to the follow-  (j|ei(#2E K ~e¥K) g o=i(012) (7K —e*K )| jy i the
ing subsectior{Sec. Il B). The system on which the proce- probability distribution of the eigenvalu¢+ « obtained
dure is to be applied is described in terms of the abstracvhen measuring the observatie on the input stat@ that
operators of the 4,1) algebra defined by Ed6). Its real- has undergone an evolution described by the unitary operator
ization in practice can change completely from case to case, . _
depending on the physical r_eahzatlon of thé]s_[u) algebra. U(8,e)=e(?2)(e K —elPK) 8
One then only has to substitute the appropriate system op-
erators and measurement results in the formulas given hemhe experimenter must repeatedly measure the observable
in order to obtain the reconstruction procedure suited to ank, on different ensemble elements after evolving each of
particular system. For the sake of illustration, a couple ofthem with the unitary operatdd (6, ¢), varying the param-
Simple idealized phySical SyStemS are given at the end of th@tersa and @ at each measuremerﬁAS we will see in the
section. following for the example of the electromagnetic field

The Lie algebra §,1) of the SUZ1,1) group is spanned su(1,1) reconstruction scheme, this amounts to measuring
by the operator&, ,K_, andK;, which are defined by the the number of photons after having squeezed the radiation
commutation relations for varying values of the squeezing amplitude and pHase.
In practice, the unbounded real amplitu@le [ 0,.°) must

[Ke K-J==2Kz, [Kz Ke]=2Ke, 6) be chosen randomly weighted with a cutoff distribution
) p(0)=(1N)exp(—weo)tanh@), wherew is a constant antis
K= }(K K, Ky=— I—(K “K) a normalization factotan example is given in Fig.),lwhile
X m e Ty g e @ can be chosen randomly |i0,277] with uniform probabil-
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ity. The parameter® and ¢ thus obtained are used to tune
the experimental apparatus so that the input state is evolve
by the operatorlU(6,¢). Then the measurement ¢f, is
performed, yielding théth experimental resut;(6; , ¢;) for
K,— k. The expectatiolt7) is estimated through the average
on N measurements,

p(m)

N
(A)= % Zo (—1)<tmiG 2] expwé;)

XTr[A{(— 1)Kz (e K —e 7K 4 ] (g) TR |

R S IR N H S SN NI

where the function exp@é) is introduced in order to com-

pensate the cutoff weighting. The parametemust be cho- (a) m

sen sufficiently large to obtain a distribution of the squeezing 5 o o
amplitude # in the allowed experimental range, and at the 8 6 ! £

same time not too large, otherwise only too sntalNalues e e 6
will result, and a too large number of experimental data . Eﬁgﬁi 8
would be needed for the tomographic reconstruction. Notice ’ =§SE=
that any normalized decaying weight function can be used in E=‘=“
place of the negative exponential used here. o2 ==
In Figs. 2 and 3 we show some Monte Carlo simulations EE
of the proposed method, where the measurement result °: ==

'-\'

m;(6,¢) have been simulated from the theoretical probabil-

ity distribution of the input state evolved By (6,¢). The 0
simulation of Fig. 2 refers to the state reconstruction of a
system in a Perelomov coherent stpté] defined as

I 1 (2k—1+n)!
|a>=ﬁn§=:o Tam). (10

(b)

In Fig. 3 the simulation of the state reconstruction of an k|G, 2. Monte Carlo simulation of the proposed experiment for
ensemble in the statdq)+|r))/y2, i.e., in a coherent su- the reconstruction of the operatar=|m)(n|, namely, the measure-
perposition of two eigenstates Kf,, is given and a compari- ment of the system density matrix elemepts,. The system is in
son is made between experiments carried out with differena Perelomov coherent stdte), with «=0.7. In this simulatiorx
weight parameters.. Notice how, with the same number of =3/4 and 2<10° measurements ok, divided into 20 statistical
data, a better reconstruction is performed with lowgr blocks have been simulated. (@ the diagonap(m) of the density
which corresponds to higher available squeezing amplitude®atrix is plotted with the statistical error bars and compared to its
0. theoretical value. In(b), the absolute values of the density matrix
The procedure that has been described is unbiased, singlementd¢,,,| are plotted.
no systematic errors are introduced. Only statistical errors L
are present and can be made arbitrarily small by increasin
the rr:umber of experimental data. g ’ ’ K.=a'b, K*EKL K= E(a*a+b*b+1), (D
We now analyze two experimental setups in order to il-
lustrate how, starting from the tomographic formulas givenwhere a and b are the annihilation operators for the two
here, one may obtain the tomography suited to a particularadiation modes. The Casimir invariant operator is given by
system. They employ the $U 1) reconstruction formulé?) 3(la'a—b'b|+1). The sef|j)} of eigenvectors oK, spans
for the tomographic reconstruction of a two-mode radiationonly the subspace of the two-mode Hilbert space in which
field and of a single-mode radiation field, respectively, andthe photon difference in the two modes is fixed and is given
are based on parametric amplifiers and photodetectors. Iy 2«—1. Thus, only the operatoisacting on this subspace
this paper, ideal setups only are considered as examples c&n be reconstructed with such setup, and one can recon-
application of SU1,1) tomography; an extensive analysis of struct the radiation state only if the difference between the
nonunit quantum efficiency and more realistic setups will bephotons in the two modes is fixed. Hefg is the observable
considered in a subsequent paper. “sum of photons” in the two modes and can be measured by
The first setup is a two-mode setup, which employs thewo photodetectors. The operatd( 4, ¢) describes a nonde-
following realization of SW1,1) through the radiation opera- generate parametric amplifiéor phase insensitive ampli-
tors: fier), where 6 and ¢ are the squeezing amplitude and phase

033805-3



G. M. D’ARIANO, E. De VITO, AND L. MACCONE PHYSICAL REVIEW A64 033805

() m

0.4

p(m)
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FIG. 3. Comparison of identical simulated experiments for the measurement of the density matrix elegentsirried out using
different weight parametess in the probability distribution for the squeezing amplituéleThe system is in the statcff>=(|q>+|r))/\/§,
with g=1 andr=6. Herex=4/5 and, as in the previous examples 20° measurements df, divided into 20 statistical blocks have been
simulated(a) and(b) show the diagonal matrix elements with their theoretical values{@rahd(d) show the absolute values of all matrix
elements. The simulation if@ and(c) is obtained with a weighiv=2.8 (corresponding t@ varying in the interva[ 0,~1.2]), while the
simulation in(b) and(d) is obtained withw=0.75 (corresponding t@ varying in[0,~4].

respectively, i.e.U (6 So)zexr{%a(aTbTekp_abe—i(p)]. In Fig. where a is the annihilation operator of the mode, ard
4 the block diagram for this experiment is presented. =13 Noti(_:e that this realization is actually a projective
The second setup, whose block diagram is given in Fig. grepresentation of SW,1). It allows one to reconstruct only

is a single-mode setup that employs the following(St) the operators that act on the subspace of the radiation space
realization: constituted by the states with fixéelven or odd parity in the

number of photons. In this case, the observédblés related
to the number of photons in the mode, while the operator

1
o Z
alatg), (12 U(6,¢) describes a degenerate parametric amplifiar

2

1 1
Ki=5(ah? K=Kl K=5
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-T- oy with N=(2k+m-+n) .

' ; We now show that the resolution of the identity of the
form (2) based on the operato3(y) andB(y) defined in
Eq. (14) follows from the orthogonality of some polynomials
obtained from their matrix elements. These polynomials are
defined by

NI
]

(mle+ =7 n)=(mlef+(1—[¢]*) e ¢ |n)

nsm—n 2 n!F(2K+m)
=D A N F 2y

FIG. 4. Block diagram for the two-mode setup for the tomogra- X 5512"*””* ”)(|§|2), (16)
phic reconstruction of S(1,1) states. The sum photodetection stage
is denoted byD, while the nondegenerate parametric amplifier iswhere/=(y/|y|)tanHy. Then-degree polynomia$$1“'d)(p)

labeled PIA. is given by
hase sensitive amplifier i.e., U(6,o)=exdoa%e ¢ @ a+n+d+k)n+d
? 249)]. e T ern ST p=2 D cra) P

17

wherek takes all the values such that the binomials are non-
In this subsection we derive the reconstruction procedurgerg, i.e., max(0; d)<k=n. Notice thatS{*?(p) is a gen-

(7) that allows the tomography protocol described in the preeralization of the Jacobi polynomials, since by using the

vious subsection. The derivation is obtained in the frameproperty

work of the general tomography theof¥3,14], which was

briefly reviewed in Sec. Il. B miT(a+n+1) -
As we will see, a resolution of the identity of the fori®) S n)(P):P”_mm (""" (p), (18)

can be obtained by making use of the measure '

B. Tomographic reconstruction procedure

we can write

d?y tanhy|
d =— 13
lu( ’Y) - |,y| ( ) sga,mfn)(p)
(wherey varies over the whole complex planand by using plem=M(2,—1) for m=n

the operators = miT(a+n+1)
PG ™ (2p—1)p" ™ ——————= for m=n,

— nNT'(a+m+1
Cy)=exgd yK,—yK_], 14 (e : 19

B(y)={C(v),K,} . =C(y)K,+K,C(y). . . .
(N=AC) Kehe = CNKAKL() where P{*A)(x), with a>—1 and 8>—1, is the Jacobi

polynomial of degreen [17].

The orthogonality relation for the polynomia&®(p)
can be obtained either from the orthogonality relations of the
Jacobi polynomials through Eq19) or from the necessary
condition (22) for the orthogonal polynomials. Thus we ob-
tain

These operators are defined so that, by introducing a bas
{In)} of eigenstates of the operatdt, [i.e., K, n)=(«
+n)|n), n=0,1, ... ], we have

(n|C(y)|m)=A{n|B(y)|m)=(n|exd yK, — yK_]|m)
(15)

1 (1
PSA D Vfodpu—p)“pd D (p)S*D(p)=5,, (20)

with the normalization

Data Analysis

Ao (n+d)!IT(a+n+1)
NIl (a+d+n+1)(a+d+2n+1)" (22)

Incidentally, notice that a useful recursion may be obtained

FIG. 5. Block diagram of the single-mode setup for the tomog-from the necessary conditidd 7] for orthogonal polynomi-
raphic reconstruction. Here PSA denotes the degenerate parametats, namely, a system af-degree polynomial$,(p) sat-
amplifier andD the photodetector. isfying the recursion
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(Anp+Bn)pn(p) —CrPn-1(p) =Pn+1(p) (22)
with A,,C,=0 is an orthogonal system. One can verify that the recur@ahis satisfied fom,(p)=S{*%(p), by choosing

_(a+2n+d+1)(a+2n+d+2)
n (n+1)(a+d+n+1) ’

(23

(a+2n+d+1)[a(2n+d+1)+2n(n+d+1)+d+d?]

B (a+d+n+1)(n+1)(a+d+2n) ’ (29)

- (d+n)(n+ a)(a+2n+d+2)
" (n+1)(a+n+d+1)(a+2n+d)’

(29

By making use of the above relations, we may derive the orthogonality cond&idor SU(1,1). In fact, we see that

dz‘y tanH y|
N B

(m[e”<s =Y ny(I]e 7K+ + K|k

(=™ KT (a+m+ DI (a+1+1) [ d* ko i
TN \/m!|!r(Z+n+1)r(z+k+1) (Lm0 ¢

(—1)”*'\/n!l!r(a+m+1)r(a+k+1) i 1 ) )
= o(m—n+1-k) _ va (m-n+k-1)/2c(a,m—n) (a,k—1)
MIKIT (@t nt DT (@t 141) ), 99° Jodp(l p)°p Sh (P)S“ 7 (p)

27N
= OmkOnl » (26)
|
with a=2k—1, Z=(y/|y|)tanHy|, y=p*%'¢, and ample, in the single-mode and two-mode realizations given
above, this resorts to squeezing the input state and then per-
_nil(a+m+ 1N 1 @7 forming a photodetectioOf course, in any physical situa-
~ mil'(a+n+1)  a+m+n+1’ tion in whichi(yK, —yK_) is easily measurable, then Eq.

(28) can be directly employed for the $11) tomography}
and where the double integral @i/ is to be performed on To this end, let us regard,, K,, andK, as elements of
the unit circle. Equatior{26) guarantees the existence of a sy(1,1), that is, as X 2 complex matrlces and the exponen-
tomographic identity of the fornil), with B(y) andC(y)  tial map “exp” as a function from sii,1) to SU1,1). In
given by Eq.(14). doing so,

Using the identity resolutio26), we can now obtain the
SU(1,1) tomographic reconstruction procedure as given in
Eq. (3), namely, i i

! 29
) 503 (29

09, Kz=

=2 A (AB(nITLeC(. (2

where g is the system density matrix andlis an arbitrary \ivhere_ o are the_ Paul_| matrices. Dengte=(|$X,Ky,Kz),

system operator. n=(sinh 6c05¢,5|nh6§|n ¢,coshf), andn, =(sing,—Ccosp,
How can this identity be used to obtain the @\1) to-  0); then one can easily check that

mography? The obvious way to obtain a reconstruction pro-

cedure of the form3) would be to devise a measurement ..

procedure for the Hermitian operatidryK , — yK_). How- exp 2i (bKy+akKy) (= 1) = (-1)"* (30)

ever, an apparatus to measure such observables is unfeasible.

It would be much better to measure the operétor which,

as we have shown, is obtained both in the single-mode and in =exp—ifon, -K)(—1)%zexpion, -K), (31)

the two-mode systems through photodetection. We will now

show how the tomographic identity we found can be em-

ployed, requiring the measurementkf on a state that has for all y=a-+ib=6e'("~ ) in the complex plane.

been evolved by the unitary operator exg(—K_), i.e., Let U be the unitary representation of 8lJ1) with Barg-
we use a reconstruction procedure of the fdBn For ex- mann indexx. As a consequence of the Stone theorem,
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one has €7s=Ugpuiy, With s=xy,z, and C(y)

=Uexp[2(bKX+aKy)], where, with slight abuse of notation, we

denote by the same symbiél both the 2<2 matrix and the

self-adjoint operator acting on the Hilbert space of the sys-

tem. Hence, since Eq830) and(31) hold at group level and
U is a representation, one has

THCO(-1)e]l=3, (e Koe ™ X))

X (= 1)), (32
where(j|e!®": Koe~ 1% K|j) is the probability of obtaining
the resulfj + «, when measuring the operatéy on the input
state ¢ evolved by the unitary operatdd(9,¢)=¢€'"" ¥,

i.e., the state' " Koe 10N K,

PHYSICAL REVIEW A64 033805

from which Eq.(7) follows immediately.

IV. CONCLUSIONS

In this paper we have introduced, derived, and numeri-
cally tested a quantum tomographic reconstruction procedure
based on SW,1) symmetry. The tomographic algorithm has
been derived using the general method of REf8,14], and
the orthogonality relation of the SW,1) tomography turns
out to be a generalization of the Jacobi polynomial orthogo-
nality identity. The method has been tested on a set of com-
puter simulated experiments, corresponding to the recon-
struction of different quantum states. Excellent agreement
between theoretical and experimental simulated matrix ele-
ments was found, within perfectly unbiased statistical errors.

Moreover, it is immediately clear that the orthogonality Two examples of physical systems to illustrate this recon-

relation (26) is valid also if we take, in place of(y) and
B(v), the operatorC’(y) andB’(y) defined as

C/(y)=eK+ 7K (— 1)K,

B (7)={C"(7).Kz},.

Thus, rewriting the tomographic identit§{28) with C’(y)
andB’(7y), and using Eq(32), we find the SW1,1) tomog-
raphy reconstruction procedure, i.e.,

(33

m=-=3
T =0

27 o Lo ot
f d¢f dotant(0)(j|e'"" Koe "M K|j)
0 0

XTr[AB'T(6,¢)](— 1), (34

struction procedure were given: the setups are based on the
SU(1,2) symmetry of parametric amplification of two-mode
and single-mode electromagnetic fields.
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