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Abstract

It is shown how one can estimate the ensemble average of all operators of a quantum system by measuring only one
fixed “universal” observable on an extended Hilbert space. This is equivalent to run a tomographic reconstruction in a
kind of “quantum parallelism”, measuring all the quorum observables with a single universal observable. An experimental
implementation in quantum optics is given, based on Kerr cross-phase modulated homodyning. 2002 Elsevier Science B.V.
All rights reserved.

PACS: 03.65.Bz; 03.67.-a

Quantum tomography [1–5] is a method for es-
timating the ensemble average of all operators of a
quantum system—including its density matrix—from
a set of measurements of aquorum of observables,
i.e., a “complete” set of noncommuting observables.
The namequantum tomography originated in quantum
optics, where the set of quadrature probability distri-
butions for varying phase was recognized [6] as the
Radon transform of the Wigner function, the Radon
transform being the basic imaging tool in computer-
ized medical tomography.Such analogy gave the name
to a first qualitative technique for measuring the matrix
elements of the radiation density operator [7]. A first
quantitative method was given in Ref. [8] (for a re-
view, see Refs. [2,4]), and is currently used in quantum
optical labs [9–13]. The method has been then gener-
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alized to the estimation of an arbitrary observable of
the field [14] and to arbitrary quantum system [15–
18]. Finally, very recently, a method for tomographic
estimation of the unknown quantum operation [19] of
a quantum device has been presented [20], exploiting
the “quantum parallelism” of an entangled input state
which plays the role of a “superposition of all possible
input states”.

In this Letter I will show how another kind of
quantum parallelism can be exploited in order to
run the whole tomographic process in parallel, by
measuring all the quorum observables in a single
universal observable. In analogy with the tomographic
Radon-transform reconstruction of a two-dimensional
image [2–4] this method would resemble a kind
of “quantum holography”, with the whole Radon-
transform included in the single universal observable.

After briefly reviewing the general tomographic
estimation approach, I will outline the construction of
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universal observables, characterizing all of them, and
giving a way for deconvolving measurement noise.
I will also sketch an experimental implementation in
quantum optics, based on Kerr cross-phase modulation
and homodyning.

Let us now recall the general quantum tomographic
method. In the following, I will use a more convenient
definition of observable than the usual selfadjoint op-
erator. I will call observable any complex operatorO
that corresponds to a complete orthonormal resolution
of the identityI = ∑

�s |�s〉〈�s|, where�s = (s1, . . . , sn)

denotes (a set of generally complex) “eigenvalues”.
In this way, all observables are in one-to-one corre-
spondence withnormal operators O , i.e., operators
commuting with their adjoint, as[O,O†] = 0, and
any complex functionF of an observable will be it-
self observable,F denoting the normal operatorF =∑

�s F (�s)|�s〉〈�s| that resorts to the same physical mea-
surement, but with a different data processing [21].

As already mentioned, the idea of quantum tomog-
raphy is the possibility of estimating the ensemble av-
erage of all operators of a quantum system from a set
of measurements of aquorum of observables, which in
the following I will denote by{c(l)}. We callquorum
any set of operators that span the linear spaceL(H) of
operators onH. This means that any operatorA can be
expanded asA = ∑

l Tr[b†(l)A]c(l) [23], where{b(l)}
is the dual set of{c(l)} satisfying Tr[b†(i)c(j)] = δij ,
and we say that{c(l)} and{b(l)} form a biorthogonal
spanning couple forL(H). Which biorthogonal couples
correspond to spanning sets? They must satisfy the so-
calledorthogonality relation

(1)
∑

l

〈n|b†(l)|r〉〈s|c(l)|m〉 = δnmδrs,

where{|n〉} denotes any orthonormal basis onH. No-
tice that the name “orthogonality relation” for iden-
tity (1) does not mean that the spanning set itself is or-
thogonal, and most of the times the physical spanning
sets of observables are overcomplete, and the indexl

of the set has to be regarded as continuous, with the
sum in Eq. (1) being replaced by an integral. Notice
that the continuous version∆(i, j)

.= Tr[b†(i)c(j)] of
the “Kroneker delta” is generally not a “Dirac delta”:
in fact, it can be bounded, and have support on the
whole index manifold (such “delta” is generally re-
ferred to as “self-reproducing kernel”, since it works
effectively as a Dirac delta under the integral of the op-

erator expansion). Finally, it is easy to prove that any
spanning set must beirreducible, i.e., it must satisfy
the following properties: (i) there are no proper sub-
spaces ofH which are left invariant under the action
of all c(l); (ii) it has a trivial centralizer, namely the
only operators that commute with allc(l) are multiple
of the identity.

Given a quorum, i.e., a spanning set of observ-
ables, the tomographic estimation of the ensemble
average〈A〉 is simply obtained in form of double
average—over both the ensemble and the quorum—of
theunbiased estimator Tr[b†(l)A]c(l) with randoml.
The most popular example of quantum tomography
is the opticalquantum homodyne tomography [2,4],
where the quorum (self-dual) is given by the operators
c(k,φ) = exp(ikXφ), with Xφ = 1

2(a
†eiφ + ae−iφ)

denoting the quadrature of the radiation field mode
with annihilatora at phaseφ with respect to the local
oscillator. Notice that for estimating the density ma-
trix also the maximum-likelihood strategy can be used
instead of the averaging procedure [16,24]. Moreover,
there is a general method [16] for deconvolving instru-
mental noise when measuring the quorum, which re-
sorts to finding the biorthogonal basis for the “noisy”
quorum: this will be used in the following. For exam-
ple, in homodyne tomography deconvolution of noise
from non-unit quantum efficiency is possible [2,4].

For tomography of multipartite quantum systems,
when they aredistinguishable—i.e., they can be mea-
sured separately—a quorum is simply given by the
tensor product of single-system quorums, e.g., for two
identical systems one has the quorum{c(k) ⊗ c(l)}
with dual set {b(k) ⊗ b(l)} and expansion of any
joint operatorJ asJ = ∑

lk Tr[b†(k)⊗ b†(l)J ]c(k)⊗
c(l). An example of application is the experiment of
Ref. [12], which has been performed on a twin beam
from parametric down-conversion of vacuum. If the
systems are indistinguishable, a permutation-invariant
global quorum on the tensor-product Hilbert space is
needed: this is the case of multimode homodyne to-
mography with a single local oscillator [25], where, in
principle, the full joint density matrix of a multimode
radiation field can be recovered using a single homo-
dyne detector with tunable mode-shape local oscilla-
tor.

Let us now come back to the idea of “univer-
sal observables”. How can I make a complete tomo-
graphic reconstruction by measuring only a single ob-
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servable? Consider the following observableH , with
[H,H †]= 0, on the extended Hilbert spaceH ⊗ K

(2)H =
∑

l

c(l)⊗ |l〉〈l| ≡ c(K),

where{|l〉} ∈ K denotes an orthonormal basis in the
ancillary Hilbert spaceK corresponding to an auxiliary
observableK = ∑

l l|l〉〈l| (K is generally infinite-
dimensional, and in the continuous case|l〉 denotes
a Dirac-normalized orthogonal vector). Then, prepare
the ancilla in a stateσ with all nonvanishing diagonal
matrix elements. In order to estimate the ensemble
average of the operatorA on H measure the following
functionFA of the observableH

(3)FA =
∑

l

Tr[b†(l)A]
〈l|σ |l〉 c(l)⊗ |l〉〈l|,

with the ancilla of the apparatus in the stateσ . Et voilà:
the ensemble average of the operatorA is just the
ensemble average of the functionFA of observableH ,
namely

(4)〈A〉 ≡ 〈FA〉.
Achieving the estimation of the ensemble average〈A〉
of a particular operatorA resorts only to change the
data processing rule in the measurement of the “uni-
versal” observableH , which then allows to estimate
every ensemble average for the quantum system onH.
The general idea is synthetically sketched in Fig. 1.

It is easy to characterize all possible universal ob-
servables of the form (2). In fact, irreducibility of any
spanning set of operators implies that the only ob-
servables which commute with a universal operator
must be ancilla observables, namely operators of the
form I ⊗ K. At the same time, an ancillary observ-
ableK classifies a class of universal observablesHK ,
namely those observables that commute withI ⊗ K,
i.e., HK = c(K) for any given spanning set{c(l)}.
Physically, the universal observable will be achieved
by jointly measuring two observablesOS ⊗ OA on
system and ancilla, after an interactionU that gives
HK ≡ c(K)= U†OS ⊗OAU for a given spanning set
{c(l)}.

As an example of application, let us consider the
following universal observable for quantum homo-
dyne tomography, with the quadraturesXφ at different
phasesφ with respect to the local oscillator achieved

Fig. 1. General scheme for aUniversal Observable H . By changing
the data processing on the computer, one can measure the ensemble
average of any operator of the quantum system with unknown
density operatorρ by measuring the observableH on an extended
Hilbert space with the ancilla prepared essentially in any stateσ

(see text). Notice that once a sample of measurement outcomes
is recorded, it can be reused for any other observable, by just
re-evaluating a different data processing.

via cross-Kerr interactionU = exp(iκa†ab†b) as fol-
lows

(5)Xκb†b = U†X0U.

Comparing this case with the general scheme for uni-
versal observables, hereXκb†b plays the role of the
universal observableC(K) in Eq. (2), the ancillary
observableOA being just the photon numberb†b of
the phase-modulating modeb, whereas the fixed sys-
tem observableOS is given by the quadratureX0 at
a fixed zero-reference phase, with the cross-Kerr in-
teractionU = exp(iκa†ab†b) modulating the phaseφ
of the quadratureXφ . For the preparation of the an-
cillary mode with annihilatorb, a sufficiently excited
coherent state would be perfectly suitable. In fact, for
irrational κ/π (in practiceκ/π not too close to the
fraction of two integers with one or two digits), since
phasesφn = κn will be dense on the unit circle, a
practically uniform phase probability distribution will
be achieved for a coherent state withκ〈b†b〉 � 2π ,
thanks to the compensation term〈l|σ |l〉−1 in Eq. (3).
The schematic apparatus for such Kerr-homodyne uni-
versal observable is given in Fig. 2. The obvious ad-
vantage of such a Kerr homodyne universal observable
with respect to conventional homodyne tomography
would be the automation of the quadrature phase tun-
ing in a physical full-optical machine. Moreover, since
a very large number of photonsb†b would be involved
(that is needed due to the smallness of the Kerr cou-
pling κ) linear photodetectors with high quantum effi-
ciencyηD are easily available for such photon-number
measurement, and the effect of nonunit quantum ef-
ficiency can be easily unbiased by just rescaling the
photon-number byηD .

Notice that although the estimation is unbiased for
almost arbitrary preparationσ of the ancilla (the only
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Fig. 2. Schematic apparatus for a Kerr-homodyne universal observ-
able, as an example of application of the general method. A homo-
dyne detector with fixed phase local oscillator is used. Instead of
rotating the phase of the local oscillator as in the customary homo-
dyne tomography, the input stateφ of the tomographed system in
the unknown stateρ is rotated via Kerr cross-phase modulation in
interaction with a stateσ , which could be any sufficiently excited
coherent state. For a suitable Kerr coupling an essentially uniform
phase probability distribution is achieved (see text).

constraint forσ is to have nonvanishing diagonal el-
ements in the ancilla observable), however, different
choices ofσ will distribute statistical errors in differ-
ent ways, depending on the particular chosen spanning
set{c(l)}. Moreover, as in the case of customary quan-
tum tomography, the instrumental noise in the detec-
tion apparatus can be deconvolved by properly tuning
the data processing in Eq. (3), thus making the mea-
surement noise-unbiased. For example, a noise on the
H channel would change the spanning setc(l) linearly
as N(c(l)) = ∑

mNmlc(m), N denoting the quantum
operation [19] of the noise. If the matrixNml is in-
vertible, the set{N(c(l))} is still a spanning set, and
the data-processing rule can be made unbiased by re-
placing the dual set{b(l)} with the set{M(b(l))} with
M = (N†)−1. On the other hand, a noise on the an-
cillary channelK can be compensated by replacing the
term〈l|σ |l〉−1 in Eq. (3) with〈l|Q∨(σ )|l〉−1, when the
quantum operation Q of the noise is invertible (here
Q∨ denotes the dual quantum operation of Q, i.e.,
its Schroedinger picture version). It is clear that this
method can be extended also to the case of joint noise
on H ⊗ K [26].

Do we have universal observables for quantum op-
eration E [19]? The answer is obviously yes. In fact,
as seen in Ref. [20], in order to estimate the matrix el-
ements of an unknown quantum operation in some ba-
sis, one needs bipartite tomographic measurement on
an entangled vector|ψ〉〉 = ∑

nm ψij |i〉 ⊗ |j 〉 with in-
vertible coefficients matrixψ = {ψij }, such as a twin-
beam from parametric down-conversion, where one
of the two parties of the vector has experimented the
quantum operation E. In other words we just need the
quantum tomography of E⊗ I(|ψ〉〉〈〈ψ|). The appara-

Fig. 3. Universal observable for a quantum operation (for tomog-
raphy of quantum operations see Ref. [20]). An entangled input
state |ψ〉〉 = ∑

nm ψij |i〉 ⊗ |j 〉 is needed with invertible coeffi-
cients matrixψ = {ψij }, such as a twin-beam from parametric
down-conversion. Only one of the two beams suffers the quantum
operation. The apparatus measures jointly two universal observables
H1 andH2 with two ancillas prepared in the stateσ1 andσ2, respec-
tively.

tus would measure jointly two universal observables
(which together make the overall universal observ-
able), with the need of two ancillas. The two universal
observablesH1 andH2 need not to be the same, and
the two ancilla need not to be identically prepared, all
compensations being included in the data-processing
rule. Estimation rules can be found in Ref. [20]. The
general idea is synthetically sketched in Fig. 3.

In conclusion, we have seen how it is possible to
perform quantum tomography of a quantum system—
i.e., to estimate the ensemble average of any operator,
including the matrix-form of its unknown state or of
any unknown quantum operation experimented by the
system—by measuring only one fixed “universal ob-
servable” on an extended Hilbert space. The ancillary
part of the apparatus can be prepared essentially in any
desired practical quantum state. All possible univer-
sal observables have been characterized, and a general
method for compensating instrumental noise has been
given. A prototype of application in quantum optics
has been suggested, based on Kerr cross-phase modu-
lated homodyning.

I hope that the present method will help in estab-
lishing soon new powerful tools for engineering more
flexible quantum measurements, and for performing
quantum characterization of devices and media for the
future quantum information technology.
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