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Abstract

We show how Bell observables on a bipartite quantum system can be obtained by local observables via a controlle
transformation. For continuous variables this result holds for the Bell observable corresponding to the non-conventiona
dyne measurement on two radiation modes, which are connectedthrough a 50–50 beam-splitter to twolocal observables give
by single-mode homodyne measurements. A simple scheme for a controlled-unitary transformation of continuous va
also presented, which needs only two squeezers, a parametric down-converter and two beam splitters.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The non-classical correlations of entangled qu
tum systems are the basis for the engineering
the next-generation devices for quantum inform
tion processing[1]. In particular, the so-calledBell
measurements play a pivotal role in most quantum
processing techniques, as they are essential in
teleportation scheme[2] or dense coding protocol[3],
and recently have been proved an invaluable reso
for achieving “informationally complete” measur
ments [4]. Nonetheless the Bell measurements s
represent a serious experimental challenge, and a
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-

eral scheme for designing them would be particula
welcomed.

The nameBell measurement is generally designat
ing a nonseparable joint measurement on a biparti
quantum system, typically a POVM made of rank-o
operators proportional to projectors on maximally e
tangled vectors[5]. Here we will focus attention on
the special case of theBell observable, correspond-
ing to an orthonormal basis of maximally entang
vectors. We will show how a Bell observable can
achieved by local measurements via a (nonlocal)
teraction of thecontrolled-unitary form—a general-
ization to dimensiond > 2 of the controlled-NOT
for qubits—corresponding to acoherence-preserving
choice among unitary transformations controlled
the state preparation of an ancilla. This result is
teresting because it emphasizes the pivotal role of
.
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controlled-unitary transformation in quantum info
mation processing. For continuous variables the s
result holds for the Bell observable realized by h
erodyning two radiation modes, which is connec
through a 50–50 beam-splitter to two local observable
describing single-mode homodyne measurements
this way we will also see how a simple scheme fo
controlled-unitary transformation of continuous va
ables can be achieved, by just using only two sque
ers, a parametric down-converter, and two beam s
ters.

After introducing some useful notation in Se
tion 2, in Section3 we prove the connection betwee
Bell and local observables for finite dimension.
Section4 we give the continuous-variable case, co
necting the heterodyne Bell observable to single-m
homodyne measurements via a 50–50 beam-splitter,
and presenting the optical scheme for the control
unitary transformation. Section5 closes the Lette
with a summary and open problems.

2. Some notation

We will make extensive use of the following corr
spondence between Hilbert–Schmidt operators on
Hilbert spaceH and vectors inH⊗H [6]

(1)A =
∑
m,n

Amn|m〉〈n|, |A〉〉 =
∑
m,n

Amn|m〉|n〉,

where the double-ket symbol|A〉〉 will be used to re-
mind the correspondence of the vector|A〉〉 ∈ H ⊗ H
with the operatorA onH. The scalar product inH⊗H
corresponds to the Hilbert–Schmidt scalar product
tween operators

(2)〈〈A|B〉〉 = Tr
[
A†B

]
,

and analogously the norm of vectors correspond
the Frobenius norm. The following identities will b
handy for calculations

(3)A ⊗ B|C〉〉 = ∣∣ACBT
〉〉
,

(4)Tr1
[|A〉〉〈〈B|] = AT B∗,

(5)Tr2
[|A〉〉〈〈B|] = AB†,

whereAT andA∗ denote the transposed operator a
the complex conjugated operator ofA, respectively,
with respect to the basis used in Eq.(1).
From Eqs.(4) and (5)it is clear that for finite di-
mensiond = dim(H) the maximally entangled state
are those corresponding to unitary operators sc
by 1/

√
d , since these are the only pure states hav

maximally chaotic local states. For infinite dimensio
we will consider Dirac-normalizable maximally e
tangled vectors.

3. Systems with finite-dimensional Hilbert space

Let us consider the set ofd2 maximally entangled
statesd−1/2|U(m,n)〉〉, corresponding to theshift-
and-multiply unitary operators

(6)U(m,n) = ZmWn,

where

(7)Z =
d−1∑
j=0

e
2πi
d j |j 〉〈j |, W =

d−1∑
j=0

|j ⊕ 1〉〈j |,

where ⊕ denotes sum modulod . The operators
U(m,n) provide a projective irreducible represe
tation of the Abelian groupZd × Zd . It is easy
to check[6] that the operatorsU(m,n) are an or-
thonormal basis forH ⊗ H, whence the vector
d−1/2|U(m,n)〉〉 are a Bell basis, i.e., a maximal
entangled orthonormal basis. This is precisely the
sis used for quantum teleportation in Refs.[2,5]. For
qubits (d = 2) it is the basis of Pauli matrices{ 1√

2
|I 〉〉,

1√
2
|σx〉〉, 1√

2
|σy〉〉, 1√

2
|σz〉〉}.

Our aim is now to find a unitary operatorV on
H⊗H evolving a local basis into the Bell basis, mo
precisely such that

(8)V |em,n〉〉 = 1√
d

∣∣U(m,n)
〉〉
,

where as a local basis we choose|em〉⊗ |n〉, the vector
|ej 〉 denoting the Fourier transformed vector of|j 〉,
with

|ej 〉 ≡ 1√
d

d−1∑
n=0

e
2πi
d nj |n〉 = F |j 〉,

(9)F ≡ 1√
d

d−1∑
n=0

e
2πi
d nj |n〉〈j | .

In the following we will often use the short notatio
|φ,ψ〉〉 .= |φ〉 ⊗ |ψ〉 for tensor products of vectors.
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A formal expression forV is readily given since we
know its action on a complete orthonormal set

V = 1√
d

d−1∑
m,n=0

∣∣U(m,n)
〉〉〈〈em,n|

(10)= 1√
d

d−1∑
m,n=0

d−1∑
i,j=0

U(m,n)ij |i, j 〉〉〈〈em,n|,

where, using Eqs.(6) and (7)we recover the matrix
elementsU(m,n)ij as follows

(11)U(m,n)ij
.= 〈〈

i, j
∣∣U(m,n)

〉〉 = e
2πi
d

imδi⊕n,j .

This corresponds to the following expression forV

V = 1√
d

d−1∑
m,n,i=0

e
2πi
d

im|i〉〈em| ⊗ |n ⊕ i〉〈n|

(12)= 1√
d

d−1∑
n,i=0

|i〉〈i| ⊗ |n ⊕ i〉〈n|.

Thus we have

(13)V =
d−1∑
i=0

|i〉〈i| ⊗ Wi,

namely the unitaryV is a controlled-unitary trans-
formation, corresponding to choosing (coheren
among the unitary transformationsWi via state prepa
ration of the first system inH⊗H. The transformation
in Eq. (13) generalizes to dimensiond > 2 the well-
known controlled-NOT gate for qubits. The prese
result is also in agreement with a similar one impli
in Ref. [7].

In the next section we will see how the prese
controlled-unitary evolution can be generalized to in
nite dimensions, and how the local-Bell connection
achieved by a very common device: the beam split

4. Continuous variables

The derivation of Section3 cannot be generalize
straightforwardly, since the groupZd × Zd has no
extension tod = ∞. However, we will see how th
same construction can be carried out for “continu
variables”—i.e., for continuous spectrum and boso
modes—corresponding to an actual quantum opt
implementation.
Let us consider two bosonic modes, with creat
and annihilation operators denoted bya†, b†, anda,
b, respectively. In the Hilbert space of each mo
consider the complete sets of Dirac-normalized eigen
vectors{|x〉0} and {|x〉 π

2
} of the quadraturesX0 =

1
2(a† + a) andXπ

2
= i

2(b† − b). Consider the follow-
ing unitary operator

(14)C = 1√
π

∫
R

dx

∫
R

dy
∣∣∆(x,y)

〉〉
0〈x| ⊗ π

2
〈y|,

where∆(x,y) ≡ e
−2ixX π

2 e2iyX0 = e−ixyD(x + iy),
D(α)

.= eαa†−α∗a denoting the displacement operat
Notice that in the present infinite-dimensional sett
the notation|A〉〉 in Eq. (1) corresponds to|A〉〉 .=
A ⊗ I |I 〉〉 with |I 〉〉 denoting the generalized vect
|I 〉〉 = ∑∞

n=0 |n〉 ⊗ |n〉 ≡ ∫
R

dx |x〉0 ⊗ |x〉0, where in
the representation of eigenstates ofa†a the transposi-
tion of mode operators is given byaT = a†.

The operatorC can be considered as the infinit
dimensional analog of the operatorV in Eq. (10),
with the orthonormal basis{|m〉} replaced by the con
tinuous Dirac set{|x〉0}. The basis 1√

π
|∆(x,y)〉〉 is

indeed maximally entangled, with orthogonality rela-
tions〈〈∆(x,y)|∆(x ′, y ′)〉〉 = πδ(x −x ′)δ(y −y ′). The
following calculation proves thatC is a controlled-
unitary transformation

C = 1√
π

∫
R

dx

∫
R

dy

∫
R

dt

× e
−2ixX π

2 ⊗ e2iyX0|t〉00〈x| ⊗ |t〉0π
2
〈y|

= 1√
π

∫
R

dx

∫
R

dy

∫
R

dt

× (
I ⊗ e2iyt

)|t + x〉00〈x| ⊗ |t〉0π
2
〈y|

= 1√
π

∫
R

dy

∫
R

dt e
−2itX π

2 ⊗ |t〉0π
2
〈y|e2iyt

=
(∫

R

dt e
−2itX π

2 ⊗ |t〉00〈t|
)

×
(

I ⊗
∫
R

dy |y〉 π
2

π
2
〈y|

)

(15)=
∫

dt e
−2itX π

2 ⊗ |t〉00〈t|.

R
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Therefore, also for continuous variables we have a
tary operator that maximally entangles a factoriz
basis, and which corresponds to a controlled-uni
transformation.

4.1. Achieving the controlled-unitary C

In this section we will give an optical scheme f
achievingC, involving the use of parametric down
conversion and beam splitters.

For a suitable choice of phases of the input and o
put modes, a 50–50 beam-splitter can be represente
by the unitary operator

(16)V = e
π
4 (a†b−ab†).

The above unitary operator brings a local basis of
homodyne detectors into the Bell basis of a hete
dyne detector[8]. In fact, consider the joint homodyn
detection of two “orthogonal” quadratures, describ
by the generalized eigenvectors|x〉0 ⊗ |y〉 π

2
of the

quadraturesX0 ⊗ Xπ
2
. It is immediate to show tha

|D(z)〉〉 is the generalized eigenvector of the hete
dyne photocurrentZ = a − b† corresponding to the
complex eigenvaluez. We will now prove the follow-
ing relation

(17)V

∣∣∣∣ x√
2

〉
0
⊗

∣∣∣∣ y√
2

〉
π
2

=
(

2

π

)1/2∣∣D(x + iy)
〉〉
.

First remind that the generalized eigenvectors|x〉φ of
the generic quadratureXφ = 1

2(eiφa† + e−iφa) can be
written as

|x〉φ = e−iφa†aD(x)|0〉0

(18)=
(

2

π

)1/4

e−iφa†aD(x)e−a†2/2|0〉,
where |0〉 denotes the vacuum for modea. Upon
rewriting |x/

√
2〉0 ⊗ |y/

√
2〉 π

2
via identity (18) in

terms of operators acting on the vacuum, we apply
beam splitter operatorV on the left, and after som
algebra we obtain

V

∣∣∣∣ x√
2

〉
0
⊗

∣∣∣∣ y√
2

〉
π
2

=
(

2

π

)1/2

e− 1
2 (x2+y2)+a†(x+iy)−b†(x−iy)ea†b†

(19)× |0〉 ⊗ |0〉.
Notice thatea†b†|0〉⊗ |0〉 = |I 〉〉. Eq.(17)then follows
immediately by using Eq.(3). We are now ready to
derive the optical scheme for the controlled-unitaryC.
According to Eq.(17), we can rewriteV in the form

V
(
I ⊗ e−i π

2 b†b
)∣∣∣∣ x√

2

〉
0
⊗

∣∣∣∣ y√
2

〉
0

(20)=
(

2

π

)1/2

eixy
∣∣∆(x,y)

〉〉
.

Introducing the local squeezing transformation

(21)S(r)|x〉 = √
r |rx〉,

we can rewrite Eq.(20)as follows

V
(
I ⊗ e−i π

2 b†b
)[

S
(
2−1/2) ⊗ S

(
2−1/2)]

× e−iX0⊗X0
(
I ⊗ ei π

2 b†b
)

(22)= 1√
π

∫
R

dx

∫
R

dy
∣∣∆(x,y)

〉〉
0〈x| ⊗ π

2
〈y|.

A realization of the transformation(21)is given by the
unitary single-mode squeezing operator

(23)S(r) = e
1
2 logr(a†2−a2).

In l.h.s. of Eq. (22) the only unitary operator tha
has no direct physical interpretation is the expon
tial e−iX0⊗X0. We will now write it as a product o
physical unitary transformations. First, let us write t
exponential in terms of bosonic operators

e−iX0⊗X0 = e− i
4(a†+a)(b†+b)

(24)= e− i
4(a†b†+ab+ab†+a†b).

The operatorsKx = 1
2(a†b† + ab) andKy = i

2(ab† +
a†b) along with their commutator

(25)Kz = i[Kx,Ky ] = 1

4

(
a†2 − a2 + b†2 − b2)

are the generators of the Lie algebrasu(1,1). In terms
of the generators of the Lie algebra, the exponen
e−iX0⊗X0 is simply given by

(26)e−iX0⊗X0 = e− i
2(Kx−iKy) = e− i

2K− .

Using the Pauli matrix realization of the Lie algeb
Kx/y = i

2σx/y and Kz = 1
2σz, one can easily deriv

the identity

(27)e− i
2K− = eiαKxeβKyeγKz,
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Fig. 1. Optical scheme to achieve the controlled unitary transfor
tion (30)(Schrödinger picture).S(r) represents the squeezing tran

formationR(r)
.= e

1
2 logr(a†2−a2). The values of the squeezing p

rameters arer1 = 2−1/2 andr2 = ( 3
4 )−1/4. The beam splitters hav

transmissivitiesτ1 = {4(2− √
3)}−1 and 1/2. The optical paramet

ric amplifier (OPA) has field-amplitude gaing = {2(3− 2
√

3)}−1.

where

α = −2 tanh−1(2− √
3),

β = −2 tan−1(2− √
3),

(28)γ = log

√
3

2
,

namely one has

e−iX0⊗X0 = e
i
2α(a†b†+ab)e

i
2β(a†b+ab†)

(29)× e
1
4γ (a†2−a2+b† 2−b2).

Summarizing the above results, the controlled-unit
transformationC is realized as follows

C = V
(
S(r1) ⊗ S(r1)

†)e− 1
2α(a†b†−ab)e

1
2β(a†b−ab†)

(30)× (
S(r2)

† ⊗ S(r2)
)
,

with r1 = 2−1/2 and r2 = (3/4)−1/4. The overall
scheme for the controlled unitary transformation
given inFig. 1.

5. Conclusions

We have shown how a Bell measurement can
obtained from local measurements via an interactio
of the controlled-unitary form. The considered B
measurement is the one used in the original tele
tation proposal of Ref.[2]. We conjecture that ou
result holds more generally for every Bell measu
ment: however, a general proof would require a co
plete classification of all Bell measurements, wh
by itself is still an open problem. We have seen t
for continuous variables asimple 50–50 beam-splitter
achieves the factorization of the heterodyne Bell m
surement, whereas a controlled-unitary interaction
be achieved by means of two squeezers, a param
down-converter and two beam splitters. This result
be certainly of interest for applications to continuo
variable processing of quantum information.
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