Available online at www.sciencedirect.com

SGIENOE@DIREGT°
PHYSICS LETTERS A

Physics Letters A 329 (2004) 188-192

www.elsevier.com/locate/pla

On the realization of Bell observables

Giacomo Mauro D’Ariano, Paolo Perinotti

QUIT Group, Dipartimento di Fisica A. \olta, Istituto Nazionale di Fisica della Materia, Universita di Pavia, via Bassi 6, 1-27100 Pavia, Italy
Received 11 June 2004; accepted 7 July 2004
Available online 21 July 2004
Communicated by P.R. Holland

Abstract

We show how Bell observables on a bipartite quantum system can be obtained by local observables via a controlled-unitary
transformation. For continuous variables this result holds for the Bell observable corresponding to the non-conventional hetero-
dyne measurement on two radiation modes, which are conngrectaebh a 50-50 beanpktter to twolocal observables given
by single-mode homodyne measurements. A simple scheme for a controlled-unitary transformation of continuous variables is
also presented, which needs only two squeezers, a parametric down-converter and two beam splitters.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction eral scheme for designing them would be particularly
welcomed.

The non-classical correlations of entangled quan- . The namesdll m.renent is generally deglgnqt-
tum systems are the basis for the engineering of ing a nonseparable J_omtensurement on a bipartite
the next-generation devices for quantum informa- guantum system,_typlcallyaPOVM made Of. rank-one
tion processing]. In particular, the so-calle@ell operators proportional to projectors on maximally en-
measurements play a pivotal role in most quantum tangled vectorg5]. Here we will focus attention on
processing techniques, as they are essential in an Fhe special case of thiell pbservable_, correspond-
teleportation schemi@] or dense coding protocfs], ing to an orthc_)normal basis of maximally entangled
and recently have been proved an invaluable resourcevecﬁors' We will show how a Bell o_bservable can l:_)e
for achieving “informationally complete” measure- ach|eyed by local measurements via a (nonlocal) in-
ments[4]. Nonetheless the Bell measurements still teraction of thecortrolled-unitery form—a general-

represent a serious experimental challenge, and agen—'z"’mOn o dimensiord ~ 2 of the controlled-NOT
for qubits—corresponding to eoherence-preserving

choice among unitary transformations controlled by
* Corresponding author. the state preparation of an gncnla. Thls result is in-
E-mail address: perinotti@fisicavolta.unipv.itP. Perinotti). teresting because it emphasizes the pivotal role of the
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controlled-unitary transformation in quantum infor- From Egs.(4) and (5)it is clear that for finite di-
mation processing. For continuous variables the samemensiond = dim(H) the maximally entangled states
result holds for the Bell observable realized by het- are those corresponding to unitary operators scaled
erodyning two radiation modes, which is connected by 1/+/d, since these are the only pure states having
through a 50-50 beasplitter to two local observables  maximally chaotic local states. For infinite dimensions
describing single-mode homodyne measurements. Inwe will consider Dirac-normalizable maximally en-
this way we will also see how a simple scheme for a tangled vectors.
controlled-unitary transformation of continuous vari-
ables can be achieved, by just using only two squeez-
ers, a parametric down-converter, and two beam split- 3. Systemswith finite-dimensional Hilbert space
ters.

After introducing some useful notation in Sec- Let us consider the set @? maximally entangled
tion 2, in Section3 we prove the connection between statesd~Y/2|U (m,n))), corresponding to theshift-
Bell and local observables for finite dimension. In and-multiply unitary operators
Section4 we give the continuous-variable case, con-

m n
necting the heterodyne Bell observable to single-mode Ulm,n) =Z"W", ©)
homodyne measurementsava 50-50 bearsplitter, where
and presenting the optical scheme for the controlled- -1 d-1
unitary transformation. Sectiob closes the Letter  Z=>)"e 7 /|j)(jl. W= lj@L{jil. (7)
with a summary and open problems. j=0 j=0

where & denotes sum modulel. The operators
U(m,n) provide a projective irreducible represen-
tation of the Abelian groupZ, x Z4. It is easy
: . ) to check[6] that the operatord/(m,n) are an or-
We will make extens_we use of th_e following corre- thonormal basis forH{ ® M, whence the vectors
spondence between Hilbert—-Schmidt operators on thed*1/2|U(m,n)>> are a Bell basis, i.e., a maximally

Hilbert spacet and vectors i @ H [6] entangled orthonormal basis. This is precisely the ba-

A= ZAmnlm)(nl, 1A) = ZAmnlm)ln% 1) sis l_Jsed for q_u_antum telt_eportatlor_l in R_e[fs,sl]. For
ot ot qubits ¢ = 2) it is the basis of Pauli matrlcesﬁ [1)),

2. Some notation

where the double-ket symboi)) will be used to re-  7519%) Jlovh, Jsloehl.

mind the correspondence of the vectah) € H @ H Our aim is now to find a unitary operatdf on
with the operatod onH. The scalar product il @ H 'H ® H evolving a local basis into the Bell basis, more
corresponds to the Hilbert—-Schmidt scalar product be- precisely such that

tween operators

1
V ms S U s s 8
(AIB) =Tr[ATB], @ lem, n)) JE| (m, n))) ®)

where as a local basis we chodgag) ® |n), the vector

and analogously the norm of vectors corresponds to : . :
lej) denoting the Fourier transformed vector [g§,

the Frobenius norm. The following identities will be

handy for calculations with
d-1

1 i .
A® BIC) = |ACB")), ®) |€./>Eﬁze @ ") = F|j),
Tra[|A)(BI] = A" B, ) n=0

d-1

— t 1 i

Tr2[|A»«B|]—AB ) ) FE\/_EZeZ”T”JM)(ﬂ. (9)
whereAT and A* denote the transposed operator and n=0
the complex conjugated operator af respectively, In the following we will often use the short notation

with respect to the basis used in Egy). |p, ¥)) = |¢) ® |¢) for tensor products of vectors.
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A formal expression fo¥ is readily given since we
know its action on a complete orthonormal set

d—=1

> |Um,m))em.n|

m,n=0
d-1 d-1

Z S UGm, myjli, ) {em.nl,

mn 0i,j=0

where, using Eqg6) and (7)we recover the matrix
elementd/ (m, n);; as follows

1
Nz

(10)

U(m,n)ij = (i, jlUm,n)))=ed "Sigp, ;. (11)
This corresponds to the following expression for

I
| VA — g71m|i><€m|®|n®i><n|
«/EZ
Z li)(i| @ |n®i)(n|. 12)
l’ll 0
Thus we have
d—1
v=>Yli)ilew, (13)
i=0

namely the unitaryV is a controlled-unitary trans-
formation, corresponding to choosing (coherently)
among the unitary transformatio#i&’ via state prepa-
ration of the first system ifif ® H. The transformation
in EQ. (13) generalizes to dimensiah > 2 the well-
known controlled-NOT gate for qubits. The present
result is also in agreement with a similar one implicit
in Ref.[7].

In the next section we will see how the present
controlled-unitary evolution can be generalized to infi-
nite dimensions, and how the local-Bell connection is

achieved by a very common device: the beam splitter.

4. Continuousvariables

The derivation of Sectio cannot be generalized
straightforwardly, since the group; x Z; has no
extension tod = co. However, we will see how the

same construction can be carried out for “continuous
variables"—i.e., for continuous spectrum and bosonic
modes—corresponding to an actual quantum optical

implementation.
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Let us consider two bosonic modes, with creation
and annihilation operators denoted Y, », anda,
b, respectively. In the Hilbert space of each mode
consider the complete se0f Dirac-normalized eigen-
vectors{|x)o} and {|x)%} of the quadraturesXo =
3@ +a) andXy = £ (b — b). Consider the follow-
ing unitary operator

1
- ﬁ/dx/dﬂﬂx’y)))om@ 5 0.
R R

where Ax, y) = ¢ X3 ¢27%0 = = D(x + iy),
D(x) = ea’—ata denoting the displacement operator.
Notice that in the present infinite-dimensional setting
the notation|A)) in Eq. (1) corresponds tgA)) =

A ® I|1) with |I)) denoting the generalized vector
1) =30201n) ® |n) = [ dx |x)o ® |x)o, where in
the representation of eigenstates:&# the transposi-
tion of mode operators is given lyf =a.

The operatoiIC can be considered as the infinite-
dimensional analog of the operatdr in Eq. (10),
with the orthonormal basigm)} replaced by the con-
tinuous Dirac sef|x)o}. The basis—- =|A(x, y)) is
indeed maximally entangt, with orhogonallty réa-
tions((A(x, y)IAK, y)) =78(x —x")é(y —y’). The
following calculation proves thaf is a controlled-
unitary transformation

1
= fdv[dy/d
oo
R R R
721 X
"% @ €2 X0)1)00(x| ® I1)ox (]

/ /dy/dz

(1 ® ez'ﬂ)n +x)oo(x| ® [t)o
1 —2itX 2ivt
ﬁ dyfdt 2 Q1o z (yle 1
R R
/ drie 2% g Il)oo(l|>
R

X <1®/dYIy)gg<y|>

(14)

(¥l

s
2

N

(15)
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Therefore, also for continuous variables we have a uni- Notice thate“TbT|0> ®|0) = |1)). Eq.(17)then follows
tary operator that maximally entangles a factorized immediately by using Eq(3). We are now ready to
basis, and which corresponds to a controlled-unitary derive the optical scheme for the controlled-unitéry

transformation.
4.1. Achieving the controlled-unitary C

In this section we will give an optical scheme for
achievingC, involving the use of parametric down-
conversion and beam splitters.

For a suitable choice of phases of the input and out-
put modes, a 50-50 beamligier can be represented
by the unitary operator

V = Fta’b—abh, (16)

The above unitary operator brings a local basis of two
homodyne detectors into the Bell basis of a hetero-
dyne detectof8]. In fact, consider the joint homodyne
detection of two “orthogonal” quadratures, described
by the generalized eigenvectors)p ® I¥)z of the
quadratures{o ® Xz. It is immediate to show that
|D(z))) is the generalized eigenvector of the hetero-
dyne photocurrenZ = a — b corresponding to the
complex eigenvalue. We will now prove the follow-
ing relation

el =(2) eermn

First remind that the generalized eigenvectais, of
the generic quadratuté; = 3(e'%a’ + ¢~'?a) can be
written as

1%

X)g = e~ %' D(x)|0)o
2 va + t2
:(—) e—1¢a aD(x)e—a /2|0>’
T

where |0) denotes the vacuum for mode Upon
rewriting |x/v/2)o ® |y/~/2)z via identity (18) in

(18)

terms of operators acting on the vacuum, we apply the

beam splitter operatov on the left, and after some
algebra we obtain

V2[o 142 z
2\Y?
Z) 0 3P tal iy —bT(x—iy) yab!
T
x10) ®0).

(19)

According to Eq(17), we can rewrite/ in the form

el
(E)l/ze"”M(x,w))-

T

(20)

Introducing the local squeezing transformation

S(r)|x) =/r|rx), (21)
we can rewrite Eq(20) as follows

V(I®e 3 [5(272) @ 5(27%2)]

~ efix()@xo([ ®ei%b1‘b)

1
=ﬁ/dxfdy|A(x,y)))o(X|® sl (22)
R R

A realization of the transformatigi21)is given by the
unitary single-mode squeezing operator

S(r) — e% |0gr(ﬂT27a2)‘

(23)

In L.h.s. of Eq.(22) the only unitary operator that
has no direct physical interpretation is the exponen-
tial e~iX0®Xo_\We will now write it as a product of
physical unitary transformations. First, let us write the
exponential in terms of bosonic operators

o~ iXo®Xo _ ,—faT+a)(bT+b)

— e—%(aTbT+ab+abT+aTb). (24)
The operatork, = 3(a'b" +ab) andK, = S(ab’ +
a'b) along with their commutator

1
K.=ilKe Kyl = 3(a? 4512207 (29)

are the generators of the Lie algelstél, 1). In terms

of the generators of the Lie algebra, the exponential
e~ 1X0®Xo js simply given by

o1 X0®Xo _ e—%(KX—iKy) — e_gx_. (26)
Using the Pauli matrix realization of the Lie algebra
Ky = 50¢/y and K, = %0 one can easily derive
the identity

i .
e 2K = 1oKi By oy Kz (27)
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Fig. 1. Optical scheme to achieve the controlled unitary transforma-

tion (30) (Schrodinger picture)S(r) represents the squeezing trans-
1 2
formationR(r) =e2 ~%) _The values of the squeezing pa-

rameters are; = 2~1/2 andrp = (3) /4. The beam splitters have
transmissivities; = {4(2 — V3)tand 1/2. The optical paramet-
ric amplifier (OPA) has field-amplitude gain= {2(3 — 2V3) L

|Ogr(aT2

where

o =—2tanh 12— /3),
B=—2tan 12— /3),

y = |og§, (28)
namely one has
o~ Xo®Xo _ e%a(aTbT—&-ab) eg Blatb+abh

% e%V(”TZ*ﬂZJFbTZ*bZ)‘ (29)

Summarizing the above results, the controlled-unitary

transformatiorC is realized as follows
C = V(S(rl) ® S(rl)T)e—%a(aTbT_ab)e%ﬂ(aTb—abT)
x (St ® 8(r2)), (30)

with 1 = 2712 and r» = (3/4)~Y/4. The overall
scheme for the controlled unitary transformation is
giveninFig. 1

5. Conclusions

We have shown how a Bell measurement can be

obtained from local measaments via an interaction
of the controlled-unitary form. The considered Bell

measurement is the one used in the original telepor-

tation proposal of Ref[2]. We conjecture that our

G.M. D’ Ariano, P. Perinotti / Physics Letters A 329 (2004) 188-192

result holds more generally for every Bell measure-
ment: however, a general proof would require a com-
plete classification of all Bell measurements, which
by itself is still an open problem. We have seen that
for continuous variables simple 50-50 bam-splitter
achieves the factorization of the heterodyne Bell mea-
surement, whereas a controlled-unitary interaction can
be achieved by means of two squeezers, a parametric
down-converter and two beam splitters. This result can
be certainly of interest for applications to continuous-
variable processing of quantum information.
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