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We consider the convex sets of Q@¢uantum operationsand POVM's(positive
operator valued measupeshich are covariant under a general finite-dimensional
unitary representation of a group. We derive necessary and sufficient conditions for
extremality, and give general bounds for ranks of the extremal POVM’s and QO’s.
Results are illustrated on the basis of simple example20@ American Institute

of Physics.[DOI: 10.1063/1.1777813

I. INTRODUCTION

The need for miniaturization and the new quantum information technblbg;s recently
motivated a search for new quantum devices with maximum control at the quantum level. Among
the many problems posed by the new technology there is the need of engineering quantum devices
which perform specific measurementsor particular state transformations—the so-calig@n-
tum operation¥ ®—which are optimized with respect to some given criterion. In most cases such
optimal quantum measurements/operations areariant with respect to a group of physical
transformations. For the case of a quantum measurement, “group-covariant” means that there is an
action of the group on the probability space which maps events into events, in such a way that
when the quantum system is transformed according to a group transformation, the probability of
the given event becomes the probability of the transformed event. This situation is very natural,
and occurs in most practical applicatioifSee Refs. 10 and J1For example, the heterodyne
measuremefit3is covariant under the group of displacements of the complex field, which means
that if we displace the state of radiation by an additional complex averaged field, then the output
photocurrent will be displaced by the same complex quantity.

In quantum mechanics the probabilities for a given apparatus for all possible states are de-
scribed by positive operator valued meaSL(I%©VM),3 and we will say that the measurement is
covariant when its POVM is covariant under a unitary group represenlzalti)oﬁor guantum
operationgQO), on the other hand, covariance means that the output of a group-transformed input
state is simply the transformed output state—a situation again quite common in practice. Typically
covariance means that the apparatus is required to work equally well on a full set of states which
is invariant under a group of transformations. For instance, if one wants to engineer an eavesdrop-
ping apparatus for a BB84 cryptographic sch&hiethat clones equally well all equatorial qubits,
then the optimal cloning operation must be covariant under the gBup, of «/2 rotations of
the Bloch sphere around its polar axis, which is a subgroup of the group of all axial rotations
G=U(1).* Similarly, if one wants to engineer a QO which works equally well on all pure states,
then the operation must be covariant under theSuld) group, where is the dimension of the
Hilbert space of the quantum system.

It is easy to see that all POVM'’s covariant under some group representation make a convex
set, which describes the complete class of possible covariant apparatuses. The same obviously
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holds for group-covariant QO’s. Typically in most applications the optimization resorts to mini-
mize a concave function on the convex set of covariant macliinegiantum estimation theo3ry
actually such function is generally lingamwhence the optimal machine will correspond to an
extremal element of the convex set. For such purpose it is convenient to classify all extremal
covariant POVM’s and QQ's, and this is precisely the subject of the present paper.

For finite dimensional Hilbert space, a characterization of all noncovariant extremal QO’s was
given in Ref. 17, whereas a characterization of all extremal POVM’s can be found in Refs. 18 and
19 for discrete finite probability space. On the other hand, no classification of the extremal QQO’s
or POVM's is available yet under a covariance constraint, since, as we will see, this constraint
makes the classification problem much harder. Coincidentally, in many applications the optimal
QO/POVM is restricted to be rank-one from the special form of the optimization fun@ténis
the case, for example, of optimal phase estimation for pure St3t@or of phase covariant
optimal cloning of pure staté%, and this has lead to a widespread belief that optimality is
synonym of rank-one. However, as we will see in this paper, for sufficiently large dimension the
extremal QO’'s/POVM'’s can easily have rank larger than one: this can actually happen for opti-
mization with mixed input states, such as in the case of optimal phase estimation with phase-
coherent mixed states.

In this paper we provide a classification for finite dimensions of all extremal POVM's and
QO’s that are covariant under a general unitary group representation. We will generally consider
continuous Lie groups, since then all results will also apply to the case of discrete groups as well,
with just a little change of notation. We provide necessary and sufficient conditions for extremal-
ity, along with simple necessary conditions, which allow to “sieve” the extremal QO's/POVM’s.
From these conditions general bounds for the rank of the extremal QO's/POVM’s easily follow as
corollaries.

The paper is organized as follows. In Sec. Il we briefly review the concept of POVM and that
of covariant POVM based on the Holevo's theorgin. Sec. IIl we recall the necessary concepts
about QO's, including their operator form introduced in Ref. 22, which allows to easily classify
the covariant QO’s as non-negative operators in the commutant of a suitable representation of the
group. Section IV is entirely devoted to some technical lemmas which will be used in the classi-
fication of both POVM’s and QO's. Finally Secs. V and VI contains the classification theorem of
extremal group covariant POVM’s and QQO's, respectively, with some simple explicit examples, in
particular with application to phase-covariant estimation and phase-covariant optimal cloning.

II. POSITIVE OPERATOR VALUED MEASURES

In the following we will denote byB(X,H) the linear space of bounded operators from the
Hilbert space( to the Hilbert spacé{, and byB(H)=B(*,H) the algebra of bounded operators
on H. By T.(H) we will denote the trace-class operators B and by T;(H) its positive
elements.

A general measurement is described by a probability sfaequipped with a sigma-algebra
structureo(X) of measurable subseBe o(X). The measurement returns a random outcome
e X. In quantum mechanics the probability that the outcome belongs to a dBilesetX) de-
pends on the statp e T;(H) of the system in a way which is distinctive of the measuring
apparatus according to the Born rule

p(B) =T P(B)p], (1)
whereP is a function ono(X) which is positive-operator valued B(7), with the normalization
condition

P(X) =1y (2

Positivity of P is needed for positivity of probabilities for every statewhereas Eq(2) guaran-
tees normalization of probabilities. In synthes?sis a positive operator valued measgrROVM)
on the probability spac&. In a sense the POVNP represents our knowledge of the measuring
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apparatus from which we can infer information on the sgafeom probabilities. The linearity of
the Born rule(1) in both argumentp andP is consistent with the intrinsically statistical nature of
the measurement, in which our partial knowledge of both the system and the apparatus reflects in
convex structures for both states and POVM'’s. This means that not only states, but also POVM'’s
can be “mixed,” namely there are POVM'’s that give probability distributions that are equivalent to
choose randomly among different apparatuses.

Group covariant POVM's: Let us consider now the general scenario in which a group of
physical transformation& can act on the probability spaée We will write gx for the action of
the group elemerg e G on the pointx € X, andgB for the action ofg on a whole subseB C X.
We will always consider the case in whi@acts transitively or¥, namely for any two points on
X there is always a group element which connects them. A consequence of transitivity 35 that
can be always regarded as the homogeneous factor $pa&/'G,, G, denoting the stability
group of any poinx e X.

A POVM P on H for the probability spacé is covariant under the unitary representation
g— Uy of the groupG when for every seB e o(X) one has

UZP(B)Uy=P(g'B). (3)

The following general theorem by Hole¥olassifies all group-covariant POVM’s.

Theorem 1 (Holevo): For square-integrable representations, a POVM P on the probability
spaceX is covariant with respect to the unitary representation-¢4 on H of the groupG of
transformations ofX if and only if it admits a density of the form

dP=Ug EUgdx, g € GigXo=X, (4)

wheredx is an invariant measure ai, with =0 in the commutantfs;O of the isotropy groum}x0
of x,, satisfying the constraint

J dg UJEUG= 1y, (5)
G

with dg invariant measure o1®.

In the case in which the POVM is designed to estimate the group element dtseB
corresponding to an unknown transformatidg, then the stability group is the identity, whence
X=G and the POVMP is covariant if and only if it admits a density of the form

dPy=U/EUydg, geG (6)

for any =0 satisfying the constraints). The possibleseedoperatorsE=0 satisfying the
constraint(5) form a convex set. In Sec. V we will classify all extremal elemestof such
convex set.

IIl. QUANTUM OPERATIONS

The mathematical structure that describes the most general state change in quantum
mechanics—such as the evolution of an open system or the state change due to a measurement—is
the quantum operatioiQO) of Kraus® Such abstract theoretical evolution has a precise physical
counterpart in its implementations as a unitary interaction between the system undergoing the QO
and a part of the apparatus—the so-calledilla—which after the interaction is read by means of
a conventional quantum measurement. We can consider generally different input and output Hil-
bert space&{ and/C, respectively, allowing the treatment of very general quantum machines, e.g.,
of the kind of quantum optimal clonefé* For example, in the cloning from one tocopies one
has input spac@{ and output spack&="H*", or its symmetric versioC=(H*"), for symmetric
cloning. Within the present paper we will only consider finite-dimensional Hilbert spaces. In the
Heisenberg picture the QO evolves observables, and will be denoted by atfapm B(K) to
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B(?#). In the Schrodinger picture the QO evolves states, and it is given by the dual map
MT™:T1(H)—T4(K), the dualism being determined by the equivalence of the two pictures in terms
of the trace inner product, namely [TW{(X)p]=Tr[M"(p)X] for all pe T,(H) and for all X

e B(K). The mapsM and M are linearcompletely positiv€CP), namely they preserve positiv-

ity of the input operator for any trivial extensionl ® Z on a larger Hilbert space that includes any
possible additional quantum systefmdenoting the identity map on the additional system. In the
Schrédinger picture the CP property physically means that the mddrom T,(H) to T,(K)
preserves positivity of any input state of the quantum sygteith Hilbert spaceH) entangled

with any possible additional quantum system. The miag of a QO must also be trace-not-
increasing, with the trace M "(p)]<1 representing the probability that the transformation oc-
curs, and the input and output states being connected as follows:

__Mp)
TiM(p)]

By denoting withl;, the identity operator on the Hilbert spaéé¢, we see that the trace-not-
increasing condition along with positivity of the map are equivalent to the constraint

!

pp (7)

M(l)=K e B(H), 0sK=ly. (8)

For finite-dimensional Hilbert spaces it is convenient to represent the ovégfsom B(K) to
B(H) as operatorfk,, on K ® H using the following one-to-one correspondence:

Ry =M"@ Z(IXI)),  M7(p)=Try[(Ix ® pIR], 9

where|l)==,, [ny®|n) is a fixed vector inH ® H, {|n)®|m)} denotes an orthonormal basis for
H ®H, and the transpositionfor operators is defined with respect to the orthonormal Hagis)|
for B(H) taken as real. One can easily check the correspond@®ncand injectivity follows from
linearity. In addition, the operatd®,, is non-negative if and only if the map1 is CP, and the
constraint(8) in terms of the operatd rewrites as follows:

Tri[Rul=K, 0=sK=<ly. (10

The positive operatorR ), satisfying the constraintt0) make a convex set, which is the operator
counterpart of the convex set of the corresponding QQ's
Group covariant CP-maps: We call the mapM from B(K) to B(H) G-covariant, when

M(VIXVy) =UIM(X)Uy, OgeG, (11
{Ug} and{Vy} denoting unitary representations Gf over the input and output spacgsand K,
respectively. The Schrédinger picture version of identity) is

M (UgpUh) =VoM(p)V], TgeG, (12

where M™ goes fromT(H) to T,(K).

The operator formR,, for maps.M simplifies the classification of QO’s that are covariant
under a groupss, resorting to the Wedderburn’s decomposition of the commutant of the represen-
tation. It is easy to show that the may is G-covariant[i.e., it satisfies Eq(11)] if and only if
its corresponding operat®,, is invariant under the representatigp® U % n fact, from Eq.(9)
using invariance of partial trace under cyclic permutation of operators acting only on the traced
space one has

0=M7(p) = VgM (UgpUVg=Tr{(1c ® p)[Ry = (Vg @ UIRu(Vg® UgTh,  (13)

and, since Eq(9) is a one-to-one correspondence between maps and operators, one concludes that

Downloaded 25 Aug 2004 to 143.107.130.131. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3624 J. Math. Phys., Vol. 45, No. 9, September 2004 Giacomo Mauro D’Ariano

[Ru,Vg®Ug]=0, OgeG. (14)

Therefore, the problem of classifying covariant CP-maps resorts to that of classifying positive
elements of the commutant of the representatige U; on K ® H. By labeling withk the generic
equivalence class of the representation, with multiplioity the Wedderburn’s decomposition of

the representation space is written as folléibs:

K®H=@&(H®CM), (15)
k

Then, sinceR,, must be a positive operator in the commutant of the representation it must have
the general form

Ry = @il ® Wiw) =WIW, W= @15, @ wy), (16)

wherew, is any operator o™, i.e., am, X m, matrix. Therefore, the classification of covariant
trace-not-increasing QO’s with (1) =K <1, is equivalent to classify the operatdrs, of the
form (16) with the constraint

2 Tl (g, @ wiwg) ] = K < 1. (17
k

The constraint17) is generally quite involved, due to the subspace mismatch between the tensor
product ® H and the Wedderburn’s decomposition: its simplification will be the main task of
Sec. VI.

IV. TECHNICAL LEMMAS

This section will be entirely devoted to technical lemmas, which will be used for the classi-
fication of both extremal covariant POVM’s and QO’s. The lemmas connect conditions on the
vanishing of partial traces with linear spannings.

In the following we will make use of the following simple fact for any linear spacand a
subspaceSC L: if the only vector of L that is orthogonal to the whole subspages the null
vector, then one haS=L. Moreover, since orthogonality to a sebf vector implies orthogonality
to its linear sparspan(s), then the previous assertion holds also for subset«€ (not necessarily
subspacg namely if the only vector orthogonal to the subseis the null vector, than one has
L= Span(s). From now we will also make use of the following natural notation

X(B(A) ® 1g) YT = Span{X(A ® 1) Y",A € B(A)}, (18)

for X,Y any operators with domaid @ 5.

Lemma 1 Let Be B(B,® B;,A), A and B, , denoting arbitrary finite-dimensional Hilbert
spaces. Then, the injectivity of the linear CP m/az]()A):TrBl[BTAB] on B(A) is equivalent to the
spanning condition

B(A) =B(B(B,) ® IBl)BT. (19
Proof. The injectivity of the mapW(A):TrBl[BTAB] on B(.A) means that
DA € B(A), Trg[B'AB]=00 A=0. (20)

The condition Tgl[BTAB]:O is equivalent to TIC TrBl[BTAB]]:O 0C e B(B,). Therefore, since
one has

Tr[C TrBl[BTAB]] =Tr(C® IBl)BTAB] =THB(C®Ig) BTA] (21)

condition(20) is then equivalent to
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DA€ B(4), TIB(B(B,) ©1g)B'A]=00 A=0, (22)

where we used notatiail8). Equation(22) says that the only operatére B(.A) orthogonal to the
operator spacB(B(13,) ® IBl)BTg B(A) is the null operator, which means tHa(B(3,) ® IBl)BT is
actually the full linear spacB(.4), namely condition22) is equivalent to conditiori19). |
The above theorem leads immediately to the following corollaries.
Corollary 1: A necessary condition for injectivity of the ma\a(A):TrBl[BTAB] onB(A) is

dim(A) < min{dim(B,),rankB)}. (23

Corollary 2: The injectivity of the map/V(A)=TrBl[BTAB] on B(A) is equivalent to the
existence of a linear injective mapfrom B(A) to B(B) such that

OA e B(4), BVA) @I Bl)BT:A. (24)
The relation between the map® and V is given by
W(A) = TrBl[B*B(V(A) ® |31)BTB]. (25)

Proof: The spanning condition19)—equivalent to the injectivity of the mapV(A)
=Trg, [BTAB] on B(A)—guarantees that for eadhe B(A) there exists an element, s&, of
B(B) such thaB(V,® |5, )BT=A. Consider now an orthonormal bagisfor B(A), and denote by
V; any element ofB(B) such thatB(V;® 5, )BT=A.. It is clear that the{V;} can be chosen as
Imearly independent. Now, for every elemetmz B(A) defineV(A) =2 Tr[ATA]V This map is
clearly linear and injective. The magA) corresponds to a nonorthogonal change of bdsisn
{Aj} to {V;}) which compensates the nonorthogonal change of &(is® IBl)BT:AJ-. Equation
(25) follows by substituting Eq(24) into the mapW. |

We have also the additional lemma.

Lemma 2: As in Lemma, the injectivity of the mapV(A)=Try| [B'AB] onB(A) is equivalent
to the linear independence of the set of opera{W%W} where We B(B;,B,) are defined from
the smgular value decomposition=&; |V;)(Wi| through the identity|W;)= (W®IB)|I> |I
e By? denoting the fixed vectdh ==, |Iy@|1), for {|I)® |m)} arbitrary orthonormal basis oB;?

Proof. First, notice that the identityX)=(X® 1 )[I) sets a bijection between vecto||x>
e B,®B; and operatorsX e B(B1,B,). Then, using the singular value decompositi@n
=3 [ViXW|, with |V;) € A and|W;) € B,® B, the partial trace in Eq20) becomes

Try, [B'AB] = 2 (VIIAIV)Trg [W(W;[1= Z (ViAVHYWW,, (26)

where 7 denotes the transposition for whi¢k® 1 ) Y= (Is, ® X1y, and * denotes complex
conjugation, i.e.X"=(X"". By taking the complex conjugate of the last equation and introducing
the matrixA;=(Vi|AlV;)" € My(C) whereN=rankB) (N? is the cardinality of the se{l\/\/fW}) the
statement20) is equivalent to

{Aj} e My(©), 2 AWW =00 A;j=0, Oij, 27
ij

namely the operator{é/\/,TV\/j} are linearly independent. [ |
In the following we will need the following generalization of Lemma 1.
Lemma 3: Let &B(@k(B(k)®B(k) A), and denote by Pthe orthogonal projector over
B(k ®B(k) A and B(k being arbitrary finite-dimensional Hilbert spaces
The following |mpl|cat|on

AeB(A), Try[PB'ABR]=00KD A=0, (29)

is equivalent to
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B(A) = Span{B[@(B(BS") ® 418"}, (29

and necessary conditions are

dim(A)? < 2, dim(BY)?, (30)
k

dim(A) < rank(B). (32

Proof. The condition Tg(k[PkBTABPk] 0 Ok is equivalent to say that for ang, e B(B(k))
one has 'I[rPkaTer[PkBTABPk]] 0 k. Since one has

Tr[CkTrB(lk)[PkBTAB Pd] = Tr(Cy @ | 50) P.B'ABRJ=TIBP(C,® | 5) P.B'A], (32

and, therefore, conditio(28) is equivalent to

AeB(A), THBP(B(BY) @I s)PBTA]=00k0 A=0. (33)

The last condition says that the only operator Bf.4) which is orthogonal to the set
BPk(B(B(Zk))®IB(lk))PkBT Ok is the null operator, or, in other words that the set spans the full

operator spac8(.A), namely Eq.(29). The necessary conditions then follow trivially. |

We are now ready to classify the extremal group covariant POVM'’s and QO'’s in the following
sections. In order to classify extremal elements of convex sets, we will use the method of pertur-
bations. We will call a non-null operat® a perturbationfor an operatoA in a convex set if both
A=tB are still in the convex set for songsufficiently smalj t>0. Then, clearhA is not extremal
in the convex set if and only if it has a perturbation.

V. EXTREMAL COVARIANT POVM'S

We have seen that the covariant POVM for the estimation of a group elenoéfain unknown
unitary transformatioJ, is of the general form

dPy=dg UIEU], (34)
with probability spaceX=G, and with
f dg UJEUg = 1y,. (35)
G
The Wedderburn’s decompositigh5) of the representation space here rewrites as follows:
H=o(Hy® ™), (36)
k
where we remind thét labels the equivalence class of irreducible componentspgruenotes its

multiplicity. The integral in the normalization conditiai35) belongs to the commutant of the
representation, whence it can be rewritten as follows:

J dg U;EUQ = %d;{j;([lﬁk ® Ter(PkE Pk)] = lH’ (37)
G

P, denoting the orthogonal projector on the subspage C™. Equation(37) follows from the
S|mple fact that for an irreducible representation on the spacefsayne hasfs dg U’ 0ZYq
=d;* Tr[Z]l, for measure d normalized to unit orG. Equation(37) allows to split the constralnt
(35) into the following set of constraints:
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Try (PEP) = dy I, Ok, (39)

where byImk we denote the identity matrix ovéi™. We then conclude that the classification of
extremal G-covariant POVM's is equivalent to find the extrenial within the convex set of
operatorsZ =0 satisfying the constrain{88). For such purpose we have the following theorem.

Theorem 2: LeE be an element of the convex set of positive operatoré(@atisfying the
constraints

Try (PEP) =yl OkeS, (39)

whereS denotes the set of equivalence classes of irreducible components in the representation.
Write E in the formE=X'AX with A=0, choosingRng(X)=Supp(A)=Ker(A)*. Then

(1) O is a perturbation ofZ if and only if ® is Hermitian, withTry, (P®P)=0 ke S, and
®=X'BX for some nonzero Hermitian B wiupp(B) CSupp(A)

(2) For the specific choice of the form of & A=& A, with A e B(H,®C™), one has B
=@ By, B e B(H,®C™) and Supp(By) C Supp(Ay), Oke S;

(3) E=X"X is extremal if and only if

B(Rng(X)) = Span{X[ @ (10 ® B(C™))]X'}. (40)

Proof:

(1) Let ® Hermitian, with Tr‘Hk(Pk(BPk):O, and ®=X"BX for some nonzero HermitiaB
e B(H) and with Supp(B) C Supp(A). Then for rankB)>0 © is necessarily nonzero, and
since A=0, both constraint#+tB=0 and Tﬁik(Pk(Eit(B)Pk):delmka are satisfied for
somet >0, whence® is a perturbation foE. Conversely, suppos® € B(H) is a perturba-
tion for =. Since we must hav&+t® =0 and Try [P(E+tO)P]=dy |, for somet>0,
then ® is Hermitian with Thy, (POP)=0 ke S. Moreover if we erte: in the form 2
=X'AX with nonnegativeA e B(H) andRng(X)=Supp(A), then alsa® can be written in the
same form ®=X'BX for some nonzero HermitiarB € B(H) and Thy [PU(E+tO)P,]

dH me 1N fact, if X is not invertible, it can be always completed to an invertible operator
Z=X+Y by adding an operator with Rng(Y)=Ker(A), and one can equivalently writ€
=Z'AZ. Now we can write also the perturbation operator in the f@®mZ'BZ. However,
since AxtB=0 for somet, then necessarily8 must haveSupp(B) C Supp(A)=Rng(X),
whenceZ'BZ=X"BX.

(2) First it is obvious that a choice of the forf= A, with A, e B(H,® C™) is always pos-
sible. Then, in order to havA+tB=0 for somet>0, one must have8=&,B,, eachB
Hermitian, withSupp(B,) C Supp(A,), Ok e S. _

(3) Since Supp(A)CRng(X) and A=0, we can always mergeA into X by substitutingX
—VAX. Then, sinceE is not extremal iff it has a perturbation, by pét) one sees thaE is
extremal iff for HermitianB € B(+) with Supp(B) C Rng(X), one has

Tr, (PX'BXP)=00keS 0O B=0, (42)

whence via Cartesian decompositionBive have the equivalent statement
B e B(Rng(X)), Try (PXBXR)=00keS O B=0. (42)
Then, by Lemma 3 this is equivalent to conditi@GHD). [ |

Corollary 3: A necessary condition for extremality of the s&df a group covariant repre-
sentation as in Theorem 2 is

rankZ)? < >, m2. (43
K
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Proof. Equation(43) is a trivial consequence of the necessary conditiD). |
Corollary 4: Every rank-one POVM is extremal
Proof. For rankX)=1 the iff condition(40) is trivially satisfied. |

Theorem 3: For S containing only a single equivalence class, sayaith multiplicity m,
=1, the extremality of a covariant POVM on the Hilbert spdgeH;,® C™ is equivalent to the
linear independence of the set of operatMTV\/j}, where We B(C™,H,,) are defined from the
spectral decompositio®E=X; |W,)}{W;| of the seed= of the POVM through the identitj\;)
=(W,® Imh)|l> |1} e (CMny®2 denotlng the fixed vectdi) =3, |I)® 1), for {|I)®|m)} arbitrary or-
thonormal basis ofC™)®2, Extremal POVM's with any rankankZ) <m, are admissible

Proof: ForS containing a single equivalence cldswith multiplicity m,,= 1 the see& of the
POVM must satisfy the single constraint

Tth(E) = dth my (44)

Now, write Z in the form E=X'AX with X € B(H,,® C™, A), andRng(X)=Supp(A), A being a
Hilbert space such th&upp(A) C A C H,,® C™, and which can be chosen ds=Rng(X). Then,
according to Theorem @ is a perturbation foE iff it is of the form ®=X'BX, with B Hermitian,
Supp(B) C Supp(A), and Thy, (X'BX)=0. This means that the extremality &f is equivalent to
the injectivity of the mapW(B) Try, (X'BX) over the set of Hermitian operatol® with
Supp(B) C Supp(A), which is equwalent to injectivity of the same map BARng(X)). We are
thus in the situation of Lemma 2, with=Rng(X), B,=C™ andB,="H,,. Therefore, by writing the
singular value decomposition &=3; |V;){(Wi|, with Span{||V;)}=Rng(X)=Supp(A) the injec-
tivity of the mapW(B)= Try, [X'BX] on B(Rng(X)) is equivalent to the linear independence of
the set of operator{sWTW} whereW e B(C™,H,) are defined through the identityV;)= (W
Rl )|I ), 1) e (CMny®e2 denotlng the fixed vectdi)=3, |I)®|I), with {|I)® |m)} arbitrary ortho-
normal basis ofC™)®2. Now, the maximum rank of the POVM is given by the maximum number
of operators\ such that the set of operato[M/TW} in B(C™) is linearly independent. Since we
can have at mos‘nh linearly independent operators B{C™), the maximum cardinality of the set
{W} is my,. [ |

Corollary 5: A POVM which is covariant under an irreducible representation is extrethal
and only if iff it is rank one

Proof. For S containing a single equivalence cldssvith multiplicity m,=1 the iff condition
(40) rewrites

B(Rng(X)) = Span{X(l;;m ® CHX"} = Span{XX}, (45)
which is satisfied iff rankX)=1. As an alternative proof, the present corollary corresponds to the
situation of Theorem 3 for multiplicityn,=1. |
A. Example

Consider a POVM or#{ with dim(H)=d covariant undeG=U(1), with
d-1

Ugz=expligN), N=2 njnxn. (46)
n=0

Here we haved one-dimensional irreducible representations with charagtgis) =exp(ik¢), k
=0, ..., d-1, namely they are all inequivalent, whence with unit multiplicity. Therefore, the nec-
essary conditiori43) bounds the rank of the POVM as follows:

rankZ)? < dim(H), (47)

and in order to have rafE)=2 one must have dift{) = 4. According to Theorem 2 the extremal
POVM’s have seed of the forfE =X'X satisfying the identity
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B(Rng(X)) = Span{|X{Xy/:0 < k< dim(H)}, (48)

where|X,)=X|k), {|{k)} denoting any orthonormal basis fét. Notice that in the present example
the operator= corresponds to a so-callembrrelation matrix namely a positive matrix with all
ones on the diagonal. This follows from the constr&B®), which in our case is simplyk|Z|k)
=1,0k. Therefore, the present classification of extremal POVM'’s coincides with the classification
of extremal correlation matrices given in Ref. 25.

B. Example

Consider a POVM fom qubits on the Hilbert spacg(=(C?)®" covariant under the tensor
representatiot) ;" of G=1(1), with

Uy =explig|1X1)), (49

where{|0),|1)} is a orthonormal basis fot2. Here we haven+1 one-dimensional irreducible
representations with characteyg(¢) =exp(ik¢), k=0, ... n, and with multiplicity mk=(',2). An
orthonormal basis of each subspdé® of H=&,C"™ is given by

(L) ={P¢"]00--- 0111 -+~ 1)}, (50)

—k k
whereP™¥ denotes thg¢th permutation ok qubitg in the stat¢l) in the tensor product af qubits
in total, with all other qubits in the stat@). In the present example, the iff condition for extre-
mality (40) requires thatE =X"X satisfies the identity

B(Rng(X)) = Span{X|i)(j[X"k e S,i,j=1, ... mJ, (51)

where now{|i)} denotes any orthonormal basis fdf. The necessary conditiq@d3) bounds the
rank of the POVM as follows:

n 2
rankE)? < >, (E) = (zn). (52)
k=0 n

Here, in order to have rafE)=2 one need®1=2 qubits. Forn=2 according to the previous
example, one necessarily must have at least two inequivalent classes, since each of the irreducible
components has less than four dimensighs same is true also for=3). The previous example

is also recovered by considering the special case in wRish(X) C ((C?)®"),, i.e., containing

only the subrepresentation b!‘i” on the symmetric subspa¢ec?)®"),, with multiplicity 1.

C. Example

Consider a POVM or+®2 which is covariant under the group representatiy® |, where
Uy is an irreducible representation Gf on . Here, we trivially have a single equivalence class,
sayh, (corresponding to the irreducible representatiby with multiplicity m,=dim(%), i.e., the
Hilbert spaceH coincides with the multiplicity spack = C™. This is exactly the case considered
in Theorem 3. Therefore, the extremality of the POVM is equivalent to the linear independence of
the set of operatorS\NITVVj}, whereW, e B(H) are defined from the spectral decompositign
=3 [WXW| of the seedE of the POVM through the identityV;)=(W, ® 1,,)|1), as in Theorem 3.
Therefore, we can have extremal POVM'’s with any r@hks dim(#). Notice that there cannot
be more than a single maximally entangled vedW in the decomposition oE, since, other-
wise, at least two operatos; would be proportional to unitary operators, and then thé\NéWj}
would be necessarily linearly dependémto products would be both proportional to the identity
The rank-one case with a single maximally entangled projector corresponds to a soBelled
POVM
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VI. EXTREMAL COVARIANT QUANTUM OPERATIONS

In the following we will denote shortly byAg the operator algebra generated by the group
representatioV/y® U*g, by Ag its commutant, and finally by the Hermitian operators in the
commutant. The following theorem classifies all extre@atovariant maps\ in the convex set
given by Eq.(17).

Theorem 4: Let R be an element of the convex set of positive operators in the comrgtant
of the operator algebrahg; generated by the group representatiog@/lJ; on K®H, i.e., of the
form

R= (1, @ Wiw) =WW, W= @(ly, @ W), (53)

satisfying the constraint
Ek‘, Tril (13, © Wiw)] =K < I, (54)
where
H K= EE(Hk ® €M) (55)

is the Wedderburn's decomposition of the representation sgaedeling the equivalence class of
representations, with multiplicity ynDenote by R the orthogonal projector over the spaéé,

® C™ of the equivalence class. Write R in the form=XXQX with Q X e A5 and Rng(X)
=Supp(Q). Then

(1) Sis a perturbation of R if and only if SH, with Tr,[S]=0, and S=X'OX for some nonzero
O e Hg with Supp(O) C Rng(X). Specifically, writing G &y, ® Q) and X= @y (I3, © Xy,
one has G&(ly, ® Oy with Supp(O,) CRng(X) Lk.

(2) One can always wrlte R in the form=R"X, with X e A of the form X @1y, ® X). Denote
by S the set of equivalence classes k for whicf#X. Then, a necessary and sufficient
condition for extremality of RX™X with Tr,[R]=K is the injectivity of the magl(O)
=Tr [X'OX] on AL N B(Rng(X)), namely

0 e A; NB(RNg(X)), Tr[X'OX]=00 O=0, (56)

which is equivalent to
BresB(RNG(X)) = @i XT3, [Pillic @ B(H))PIX- (57)

Proof:

(1) Let SeH{, with Tre[S]=0, and S=X'OX for some nonzero HermitianO with
Supp(0) C Supp(Q). Then for rank0) >0 SeHg is necessarily nonzero, and sinkk,
e Q=0, all constraintsQ+tO e Hg, Q+t0O=0, and Tg[R+tS]=K are satisfied for some
t>0, whenceSis a perturbation foR. Conversely, suppose th&ie I ® H is a perturbation
for R. Since we must havel s R+tS=0 and Tg[R+tS]=K for somet>0, thenSe H
with Tr,[S]=0. Moreover, if we writeR in the formR=X'QX with Rng(X)=Supp(Q), then
alsoS can be written in the forns=X'OX for some nonzero Hermitia® e Hg. In fact, if X
is not invertible, it can be always completed to an invertible operatoX+Y by adding an
operator Ye Ag of the form Y= Slly, ® YW  with Rng(Y,)=Ker(Qy) [where Q
—eBk(IH ®Q,)], and one can equivalently WI‘IR Z'Qz with Qe H; andZ e A;,. Now we
can wr|te also the perturbation operator in the f@mZ'OZ. However, since for somethe
operator Q+tO=0 must belong to the commutamt;, then necessarilyOeHg and
Supp(O)C Supp(Q)=Rng(X), with  Z'0z=X'OX.  Specifically,  writing Q
=®y(l3, ® Qy), one has0=a&(l;, ® Oy) with Supp(Oy) C Supp(Q) =Rng(X,) k.
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(2) As in part(1) we can always tak&) as the identity, and redefingé— \'QX sinceQ=0,
keepingX of the formX= @k(IH ® Xy, since both operators in the produg®X belong to the
algebraAg. From part(1) we then see tha®=X"X with X e Ag is extremal if and only if

O e H; N B(Rng(X)), Tr[X'OX]=00 0O=0, (58)
and via Cartesian decomposition this is equivalent to
0 e A; NB(RNg(X)), Tr[X'OX]=00 O=0. (59)

SinceO e A;NB(Rng(X)) can be decomposed é:s:eak(IHk® 0Oy with O, e B(Rng(Xy))
Ok e S, then the statemer(69) is equivalent to

Ok € S Oy € B(Rng(Xy)),

2 Tl (1, © X0 (15, ® O(Il, ® X9] =00 O, =00k e S, (60)
keS
or else
OkeS Oy e B(Rng(Xy),
Tl @ sz, ® X0 (13, ® O3, ® X)]1=00 O =00k e S, (61)

The vanishing of the partial trace can be written as the vanishing of the tr@@qe'g(lHk
®Xk)T(IH ®Ok)(IH X )(Ic®C)] for any CeB(H), namely the vanishing of
Tr{eakesokxk Try] [Pk(I,C®C)Pk]X } for any C e B(*), and upon definindgs=&, .50y, the
statemen{(61) rewrltes

S S @kesB(Rng(Xk)), TI’{SGBKESXK Ter[Pk(IK ® B('H))Pk]Xl} = 0 D S: 0, (62)

namely, since the only operator in the linear spagg sB(Rng(X,)) orthogonal to the
subspacedy . sXy Try [Pyl ® B(H))Pk]xl is the null operator, one has

®1esB(RNG(X)) = e sXi Tr [Pillic @ BH))PIX. (63)
|

Corollary 6: As in Theorem 4, a necessary condition for extremality is

> rank(X)? < dim(H)2. (64)
keS
Corollary 7: Any rank-one covariant QO is extremal
Proof. For rankX) =1 the sefS must contain only one equivalence class, and the iff condition
(57) of Theorem 4 is then trivially satisfied. |
Corollary 8: For an irreducible representation any extremal covariant QO must be rank-one
Corollary 9 (Choi): In the noncovariant case, a Q® from B(K) to B(H) is extremal iff it
can be written in the formi1(0) ==; W/OW, with W, € B(#,K) and the set of operatof&V/W;}
linearly independent
Proof. The noncovariant case corresponds to the trivial covariance @saup i.e., the group
containing only the identity element. This corresponds to have just a single equivalence class, with
multiplicity equal to dinf ® K). Then, as in the proof of poirfR) of Theorem 4 the extremality
of R=X"XeB(H®K) is equivalent to the injectivity of the mapV(A)=Tr[X'AX] on
B(Rng(X)). According to Lemma 2, using the singular value decomposierX; |V;)(Wi|, with
|V;) orthonormal basis foRng(X) and |W;) € K ® H, one hasM(0)=3; W/OW for O e B(K),
and W(A)=3; (Vi|A|Vj)\A47M for Ae B(Rng(X)), and injectivity of W is equivalent to linear
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TABLE I. Orthonormal bases for the supporting spaggs (™= ("™ of the kth equivalence class of irreduc-
ible representations for 1 to 2 phase-covariant cloning. The orthonormal basis are chosen as subsets of an
orthonormal basis for the tensor produc® H.

k lky® |hj>
-1 |oo1)
|102),/011),|000)
1 100,010,111
110
independence of the set of operat{)MTV\/j}. [ |

Corollary 9 is the same as Choi theoréhiNotice that differently from the case of QQO’s, for
POVM's the noncovariant case cannot be recovered as a special case of the covariant classifica-
tion, since the group itselor, more generally, the homogeneous factor spaocides with the
probability spacex of the POVM, whence trivializings also trivializesX.

A. Example

Consider the phase-covariant clonifigf for equatorial qubits from 1 to 2 copies. This cor-
responds taG =U(1), with representationt) ;=€ Mo andv¢:ei¢22s1 ID{ts wheres=0 denotes
the input qubit and=1, 2 theoutput ones. Heré{=C(? and C=H1%2. We first need to decompose
the representatio, ® U’,. This is made of one-dimensional representations, with charagtérs
with k=-1,0,1,2 andmultiplicities m_,;=1, my=3, m;=3, andm,=1. The necessary condition
(64) in the present case becomBg. s rank(X,)?><dim(#)?=4, which means that we can have
either a single equivalence class with ré&xg =<2, or two equivalence classes with rak=1
each. Orthonormal bases for the supporting spatgs C™= C" of the kth equivalence class of
irreducible representations are reported in Table | as subset of an orthonormal basis for the tensor
productC @ H.

The operatorsR=%, .5 Ri=2ycs2) |z//,<k)><z,b|(k)| satisfying the necessary conditions and the
trace-preserving condition are reported in Table Il. It is easy to check that the case Ofjank
=2, which would be possible only fok=0 or k=1, does not satisfy the iff conditiofb6).
Therefore it is possible to have only rank-one operaXgts

As a specific optimization problem, let us consider the maximization of the fidelity averaged
over the two outputs

TABLE II. Cloning from 1 to 2 copies: classification of operat®s ;. s R=,.sZ |#4)(yf¥| satisfying the necessary

condition.

S={k} (% (7

{-1,2 |001) 110

{0, al000) +b|011) +c|102) a’|111)+b’'|100 +c’|010 [a?+|b'|?+|c"|?=1

[a’|*+[b[?+|c[*=1

0,-1 1000 +a/012)+b|101) c/001) |af2+|bj2+|c2=1

{1,-1 al100+b|010 +c|111) d|001) |a?+|b]2=1
|c[+[d]*=1

{1,2 aj100+b[010+|111) d|110 |af?+[b]2+|d]?=1

{0,2 al000)+b|011)+c|101) d|110 |a2+|d]2=1
[b|>+c[>=1

{0} 1/2|100+ 1/2|011),|000

(1} 1/2(010+1/2/100),111)
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TABLE lIl. Orthonormal bases for the supporting spa@ége C™= C"™ of the kth equivalence class of irre-
ducible representations for 1 to 3 phase-covariant cloning. The orthonormal basis are chosen as subsets of an
orthonormal basis for the tensor produc® H.

k k) @ [hy)

-1 |0001)
|1001),|0101),]0011),|0000
|1000,/0100,|0010,|1103),]1011), (0111
[1100,/1010,]0110,|1111)

1110

w N P O

F = (HTOL M (D] + Tl M BI=Tr 30 ® [u)ul + el © DM ()]

(65)
and for equatorial qubits we can chodgg=|+), where|i>i(1/\"5)(|O>i|1>). Then the fidelity
rewrites as

F=Tr{WRy], (66)
W= [+ )(+ [+ 5= = [ @ [+ )+ + [+ X+ [ @ [=)X=]) @ [+ )+]. (67)

One can see thaW is invariant for permutations over the output copies, and, by construction, also
all vectors in Table Il have the same symmetry. Due to the special form of the fidelity, the optimal
map [satisfying M (I ) =14] is obtained forS={0, 1} with corresponding rank-two operat&,,

given by
R =[O0 O] + [Py,
1 1 1
9~ =% (joo0 + Hjowp + 10,
V2 V2 V2
1 1 1
By - =—=( |11 + —=[100 + —=|01 ) 68
|y) \5(| b+ 51100 + =010 (68)
B. Example

Consider the phase-covariant clomifi¢f for equatorial qubits from 1 to 3 copies. This cor-
respond toG=1(1), with representationtJ ,=¢' V1o and V¢:ei¢23$1 1Dk wheres=0 denotes
the input qubit ang=1,2,3 theoutput ones. Her@{=(? and =H®3. We first need to decom-
pose the representatiaf, ® U;. This is made of one-dimensional representations, with characters
ks with k=-1,0,1,2,3 andnultiplicites m_;=1, my=4, m;=6, m,=4, andm,=1. Orthonormal
bases for the supporting spackg® C™=C" of the kth equivalence class of irreducible repre-
sentations are reported in Table Il as subset of an orthonormal basis for the tensor gfoduct
®H. Again, since dini{)=2, the necessary conditiof64) says that we can have only one
equivalence clask with rank(X,) <2, or two equivalence classes both with rexk=1. In Ref.
22 it is shown that the map which optimizes the averaged equatorial fidelity is actually given by
the rank-one map fo8={1} with corresponding operatd®,, given by

Ry = [ %y),
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|ty = %(uooo +(0100 + (0010 +|110%) + [1011) +[0111). (69
J

Notice that, as a consequence of the specific symmetric form of the chosen fidelity criterion,
the cloning maps of the examples in Secs. VI A and VI B are both symmetrical, namely the output
Hilbert space is indeed restricted to the symmetric tensor s{#4€8),. Clearly, with the same
method also nonsymmetric types of cloning can be analyzed well.

C. Example

Consider a generic covariant QO with="7, V4=U,, andG=SU(d), whered=dim(H). In
this case the representatlmb@vug has two |rredu0|ble components, one which is one dimen-
sional, corresponding to the invariant vectbre H®2, and one on the orthogonal complement,
and the two components will be denotedliby0 andk=1, respectively. Since both the irreducible
components of the representation have unit multiplicity, the oper@toX"X must haveX
=>cs CPr ¢ e C, P, denoting the orthogonal projector on the invariant space of the irreducible
componenk, and the necessary conditigdy) is trivially satisfied. On the other hand, one can see
that the iff condition(56) is satisfied for the irreducible representaticBs{0} and S={1},
whereas for the reducible on8={0,1} the map 7({0)=Tr[X'OX] is never injective on
ALNB(RNg(X)) [one has Te[XTOX]=(1/d)[|col?ap+(d?-1)|cs?a1]l, for O=agPy+ayPy,
ag,a4 € C]. Therefore, the only trace-preserving optimal maps are those corresponding to the
operatorsR=|1){I| and R=[d/(d?-1)](1®2-(1/d)[1){]|), corresponding to the trivial map1=7
and to the so-called isotropic depolarizing chanpelO)=[d/(d*~1)]Tr[O]l;,—~[1/(d*>-1)]p.
Finally, notice that in the present example the optimal covariant maps are compatible only with
(multiple of) the trace-preserving condition, since both partial trace$Pyi are proportional to
the identity.

D. Example

We consider now the same problem as in the previous example, but noWé(wlh In this
case we need to consider the positive operaforghich are invariant undet’ ® U’.. It will be
easier to consider the representatigy U, and then take the complex conjugateRoét the end.
Now we have again two irreducible inequivalent components, ksay with invariant spaces
(H®?),, the symmetric and the antisymmetric spaces. As in the previous example, the general form
of R=X"Xis X=3, .5 ¢Pw, Ce C, andPi:%(I;‘?tzi E), whereE is the swap operator on the tensor
product. However, the maO) =Tr[X'OX] is injective onA; N B(Rng(X)) only for represen-
tations with a single irreducible component. One can see thQEPI_TE:%(dtl)IH, and only
trace-preservingor multiplying by a constantQO’s are compatible with the present covariance.
In conclusion, the only extremal covariant operators Rre (d+1)"1(1°2+E), corresponding to
the channels\.(0)=(d+1)"YTr(0)l,,=07]. The mapM, is the optimal transposition map of
Ref. 26.
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