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E-mail: dariano@unipv.it, lopresti@unipv.it and perinotti@fisicavolta.unipv.it

Received 11 April 2005, in final form 11 May 2005
Published 15 June 2005
Online at stacks.iop.org/JPhysA/38/5979

Abstract
Similarly to quantum states, also quantum measurements can be ‘mixed’,
corresponding to a random choice within an ensemble of measuring
apparatuses. Such mixing is equivalent to a sort of hidden variable, which
produces a noise of purely classical nature. It is then natural to ask which
apparatuses are indecomposable, i.e. do not correspond to any random choice
of apparatuses. This problem is interesting not only for foundations, but also
for applications, since most optimization strategies give optimal apparatuses
that are indecomposable. Mathematically the problem is posed describing
each measuring apparatus by a positive operator-valued measure (POVM),
which gives the statistics of the outcomes for any input state. The POVMs
form a convex set, and in this language the indecomposable apparatuses are
represented by extremal points—the analogous of ‘pure states’ in the convex
set of states. Differently from the case of states, however, indecomposable
POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this
paper we give a complete classification of indecomposable apparatuses (for
discrete spectrum), by providing different necessary and sufficient conditions
for extremality of POVMs, along with a simple general algorithm for the
decomposition of a POVM into extremals. As an interesting application,
‘informationally complete’ measurements are analysed in this respect. The
convex set of POVMs is fully characterized by determining its border in terms
of simple algebraic properties of the corresponding POVMs.
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1. Introduction

Measurements are the essence of any experimental science. At extreme sensitivities and
precisions they become the true core of quantum mechanics. For any practical need, a
measurement can always be regarded as the retrieval of information about the ‘state’ of the
measured system. However, due to the no-cloning theorem [1, 2],4 even for an elementary
system—e.g. a single harmonic oscillator or a spin—it is impossible to recover a complete
knowledge of the state of the system from a single measurement [3] without prior knowledge.
Then, since in quantum mechanics different incompatible measurements can be performed
in principle, one is faced with the problem of which measurement should be adopted for
accomplishing a specific task, and which strategy of repeated measurements would be the
most statistically efficient. These are the basic issues of the operational viewpoint of quantum
estimation theory [4].

A measurement on a quantum system [5] returns a random result e from a set of possible
outcomes E = {e = 1, . . . , N}, with probability distribution p(e|ρ) depending on the state ρ

of the system in a way which is distinctive of the measuring apparatus according to the Born
rule

p(e|ρ) = Tr[ρPe]. (1)

In equation (1) Pe denote positive operators on the Hilbert space H of the system, representing
our knowledge of the measuring apparatus from which we infer information on the state ρ

from the probability distribution p(e|ρ). Positivity of Pe is needed for positivity of p(e|ρ),
whereas normalization is guaranteed by the completeness

∑
e∈E Pe = I . In the present paper

we will only consider the simple case of the finite discrete set E. More generally, one has
an infinite probability space E (generally continuous), and in this context the set of positive
operators {Pe} becomes actually a positive operator valued measure (POVM). Every apparatus
is described by a POVM, and, conversely, every POVM can be realized in principle by an
apparatus5 [5–10].

The linearity of the Born rule (1) in both arguments ρ and Pe is consistent with the
intrinsically statistical nature of the measurement, in which our partial knowledge of both the
system and the apparatus reflects in ‘convex’ structures for both states and POVMs. This
means that not only states, but also POVMs can be ‘mixed’, namely there are POVMs that
give probability distributions p(e|ρ) that are equivalent to randomly choosing among different
apparatuses. Note that mixed POVMs can also correspond to a single measuring apparatus,
not only when the apparatus itself is prepared in a mixed state, but also for pure preparation,
as a result of discarding (tracing out) the apparatus after a unitary interaction with the system.
Clearly, such mixing is itself a source of ‘classical’ noise, which can be in principle removed by
adopting an indecomposable apparatus in the ensemble corresponding to the mixed POVM.
It is then natural to ask which apparatuses are indecomposable, i.e. ‘pure’ in the above
sense, or, mathematically, which POVMs correspond to extremal points of the convex set.
The classification of such apparatuses is certainly very useful in applications, since most

4 In [1] it is shown that the cloning machine violates the superposition principle, which applies to a minimum total
number of three states, and hence does not rule out the possibility of cloning two nonorthogonal states. It is violation
of unitarity that makes cloning any two nonorthogonal states impossible [2].
5 The first proof of realizability of POVMs in terms of usual projection-valued measurements (PVM) is the Naimark
extension theorem [6], which, however, remains at an abstract level. The problem of actual realizability of POVMs
cannot be disconnected from that of realizing instruments, which provide a more thorough description of the apparatus
in terms also of the state-transformation that it affects. In this sense, the most general realization theorem is due to
Ozawa [7]. The history of this subject is also complicated by many other aspects of the problem, and for a selection
of literature on modern measurement theory we suggest the reviews [5, 8–10].
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optimization strategies in quantum estimation theory [4, 5] correspond to minimize a concave
(actually linear) function on the POVMs convex set—the so-called ‘cost-function’—whence
leading to an optimal POVM which is extremal.

Surprisingly, extremality for POVMs generally does not mean being rank-one, as for ‘pure’
states. In other words, indecomposable POVMs are not necessarily realized by von Neumann
measurements. Indeed, as we will see in this paper, there are rank-one POVMs that are not
extremal, whereas, on the opposite side, there are higher-rank POVMs which are extremal.
Moreover, whenever the optimization problems have additional linear constraints—e.g. for
covariant POVMs, or for fixed probability distribution on a given state—the corresponding
subset of POVMs is a lower dimensional convex set corresponding to a section by a hyperplane
of the complete POVMs convex set, with boundary equal to the section of the original boundary,
and whence with extremal points that belong to the boundary of the convex set of all POVMs.
For this reason, also the boundary of the POVMs convex set is interesting in practice, since
POVMs that are optimal (for a concave cost function) with an additional linear constraint
generally are non-extremal, but still belong to the boundary. One can also argue that POVMs
which lie inside faces of the convex, physically exhibit a different degree of ‘classical’ noise
in relation with the dimensionality of the face. Note that one should not imagine the POVMs
set as a polytope, since, in contrast the set is ‘strongly convex’, namely the extremal points
are not isolated, but lie on continuous manifolds.

In the present paper we address the problem of apparatus decomposability along three
lines of attack: (a) by providing simple necessary and sufficient conditions for extremality
of POVMs; (b) by establishing the complete structure of the POVMs convex set via the
characterization of its border in terms of algebraic properties of the POVMs; (c) by providing
a simple general algorithm for the decomposition of POVMs into extremals. For simplicity,
the whole paper is restricted to the case of discrete spectrum. In section 2, after clarifying
the general features of convex combinations of POVMs, using the method of perturbations
we derive three different if-and-only-if conditions for extremality, along with some corollaries
giving easy useful conditions, only necessary or sufficient, that will be used in the following.
Section 3 exemplifies the results of section 2 in the case of a single qubit. Section 4 presents
the characterization of the border of the convex set in terms of algebraic properties of POVMs.
Section 5 shows that for every dimension d = dim(H) there is always an extremal POVM
with maximal number N of elements N = d2, corresponding to a so-called informationally
complete POVM [11]. After summarizing the results in the concluding section 6, the appendix
reports the algorithm for decomposing a POVM into extremals.

2. Convexity and extremality of POVMs

Let us denote by PN the convex set of POVMs on a finite-dimensional Hilbert space H, with
a number N of outcomes E = {1, . . . , N}. We will represent a POVM in the set as the vector
P ∈ PN, P = {P1, . . . , PN } of the N positive operators Pe. The fact that the set PN is convex
means that it is closed under convex linear combinations, namely for any P′, P′′ ∈ PN also
P = pP′ + (1 − p)P′′ ∈ PN with 0 � p � 1—i.e. p is a probability. Then, P can be also
equivalently achieved by randomly choosing between two different apparatuses corresponding
to P′ and P′′, respectively, with probability p and 1−p, since, the overall statistical distribution
p(e|ρ) will be the convex combination of the statistics coming from P′ and P′′. Note that PN

contains also the set of POVMs with a strictly smaller number of outcomes, i.e. with E′ ⊂ E.
For such POVMs the elements corresponding to outcomes in E\E′ will be zero, corresponding
to zero probability of occurrence for all states. Clearly, for N � M one has PN ⊆ PM ⊆ P ,
where by P we denote the convex set of all POVMs with any (generally infinite) discrete
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spectrum. The extremal points of PN represent the ‘indecomposable’ measurements, which
cannot be achieved by mixing different measurements. Obviously, a POVM which is extremal
for PN is also extremal for PM with M � N , whence it is actually extremal for P , and we
will simply name it extremal without further specifications.

Let us start with a simple example. Consider the following two-outcome POVM for a
qubit

P = (
1
2 |0〉〈0|, 1

2 |0〉〈0| + |1〉〈1|). (2)

By defining D = 1
2 (|0〉〈0|,−|0〉〈0|), the two vectors P± = P ± D correspond to the following

different POVMs,

P+ = (|0〉〈0|, |1〉〈1|) , P− = (0, I ), (3)

which, intuitively are extremal, whereas P is not, since P = 1
2 P+ + 1

2 P− (we will see in the
following that P± are indeed extremal).

Now the problem is how to assess when a POVM is extremal. Looking at the above
example, one notes that the non-extremality of P is equivalent to the existence of a vector of
operators D �= 0 such that P± = P ± D are POVMs, because in this case P can be written as
a convex combination of P+ and P−. The non-existence of such vector of operators D �= 0
is also a necessary condition for extremality of P, since for a non-extremal P there exist two
POVMs P1 �= P2 such that P = 1

2 P1 + 1
2 P2, whence D = P1 − P2 �= 0.

This leads to the method of perturbations for establishing extremality of a point in a
convex set, which in the present context will be the following.

Method of perturbations. We call a nonvanishing D a perturbation for the POVM P if there
exists an ε > 0 such that P ± εD are both POVMs. Then a POVM is extremal if and only if it
does not admit perturbations.

From the definition it follows that perturbations for POVMs are represented by vectors
D of Hermitian operators De (for positivity of P ± εD) and with zero sum

∑
e∈E De = 0 (for

normalization of P ± εD). Specifically, D is a perturbation for P if for some ε > 0 one has

Pe ± εDe � 0 ∀e ∈ E.

Note that the condition Pe ± εDe � 0 is equivalent to ε|De| � Pe, and a necessary condition
for ε|De| � Pe is that Ker(Pe) ⊆ Ker(De), or equivalently Supp(De) ⊆ Supp(Pe) (the support
Supp(X) of an operator X is defined as the orthogonal complement of its kernel Ker(X)). In
fact Ker(De) = Ker(|De|), and for a vector |ψ〉 ∈ Ker(Pe) with |ψ〉 �∈ Ker(|De|), one would
have

〈ψ |(Pe − ε|De|)|ψ〉 = −ε〈ψ ||De||ψ〉 � 0,

contradicting the hypothesis. Clearly, the Hermitian operators De can be taken simply as
linearly dependent—instead of having zero sum—i.e.

∑
e λeDe = 0 for non-vanishing λe,

and, moreover, one can consider more generally complex operators De with

Supp(De) ∪ Rng(De) ⊆ Supp(Pe) ∀e ∈ E,

and satisfying ε|De| � Pe. In fact Pe ± εD′
e � 0 is satisfied ∀e ∈ E by the set of Hermitian

operators

D′
e = λeDe + λ∗

eD
†
e,

for which
∑

e D′
e = 0.

The above considerations show that what really matters in assessing the extremality of the
POVM P = {Pe} is just a condition on the supports Supp(Pe), corresponding to the following
theorem.
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Theorem 1. The extremality of the POVM P is equivalent to the nonexistence of non-trivial
solutions D of the equation

∑

e∈E

De = 0, Supp(De) ∪ Rng(De) ⊆ Supp(Pe) ∀e ∈ E. (4)

The above condition can be made explicit on the Pe eigenvectors
{∣∣v(e)

n

〉}
corresponding to a

nonzero eigenvalue, which therefore span Supp(Pe). Then, equation (4) becomes the linear
homogeneous system of equations in the variables D(e)

nm = 〈
v(e)

n

∣∣De

∣∣v(e)
m

〉

∑

e∈E

rank(Pe)∑

nm=1

D(e)
nm

∣∣v(e)
n

〉 〈
v(e)

m

∣∣ = 0 ⇐⇒ D(e)
nm = 0 ∀n,m, ∀e ∈ E, (5)

namely the following version of theorem 1.

Theorem 2. A POVM P = {Pe}e∈E is extremal iff the operators
∣∣v(e)

n

〉 〈
v(e)

m

∣∣ made with the
eigenvectors of Pe are linearly independent ∀e ∈ E and ∀n,m = 1, . . . , rank(Pe).

Theorem 2 is the characterization of extremal POVMs given by Parthasaraty in [12] in a
C∗-algebraic setting. Note that instead of the eigenvectors

{∣∣v(e)
n

〉}
one can more generally

consider a non-orthonormal basis, which can be useful in numerical algorithms.
Another interesting way to state theorem 1 is in terms of weak independence of orthogonal

projectors Ze on Supp(Pe), where we call a generic set of orthogonal projections {Ze}e∈E

weakly independent [13] if for any set of operators {Te}e∈E on H one has
∑

e∈E

ZeTeZe = 0 ⇒ ZeTeZe = 0, ∀e ∈ E. (6)

Note that since the orthogonal projectors are in one-to-one correspondence with their
supporting spaces, the notion of weak independence can equivalently be attached to the
supporting spaces Supp(Pe). This leads us to the alternative characterization of extremal
POVMs.

Theorem 3. A POVM P = {Pe}e∈E is extremal iff the supports Supp(Pe) are weakly
independent for all e ∈ E.

The proof is straightforward if one considers that any perturbation D for P can be written as
De = ZeDeZe with the constraint

∑

e

ZeDeZe = 0. (7)

Then the theorem simply says that the only allowed perturbation for an extremal POVM is the
trivial one.

Some corollaries relevant for applications follow immediately from the main theorem 1
or its equivalent versions.

Corollary 1. For
∑

e∈E dim[Supp(Pe)]2 > d2 the POVM P is not extremal.

This means that a POVM with more than d2 nonvanishing elements is always decomposable
into POVMs with less than d2 elements. For the case of d2 elements theorem 1 also implies
that

Corollary 2. An extremal POVM with d2 outcomes must be necessarily rank-one.
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In fact, for larger rank we would have more than d2 eigenvectors
∣∣v(e)

n

〉
, and the operators∣∣v(e)

n

〉 〈
v(e)

m

∣∣ cannot be linearly independent. From theorem 1 it also follows that if some
elements of the POVM P have non-disjoint supports, then P is not extremal, or, equivalently

Corollary 3. An extremal POVM P = {Pe} must have all supports Supp(Pe) mutually disjoint.

Precisely, we call two linear spaces A and B disjoint when A ∩ B = {0} is the null vector. It is
worth noting that two linear spaces that are disjoint are not necessarily orthogonal, whereas,
reversely, two orthogonal spaces are clearly disjoint. We emphasize that the condition of
corollary 3 is only necessary. Indeed, it is easy to envisage a POVM that satisfies the above
condition without being extremal, e.g. a rank-one POVM for d = 2 with five elements
corresponding to the vertices of a pentagon in the Bloch sphere (see section 3 for extremal
POVMs for qubits).

Other obvious consequences of theorem 2 are the following.

Corollary 4. Orthogonal POVMs are extremal.

Corollary 5. A rank-one POVM is extremal if and only if its elements Pe are linearly
independent.

Corollary 1 states that for dimension d an extremal POVM can have at most d2 non-null
elements (in section 5 we will show that such an extremal POVM always exists). Here we can
immediately conclude that

Corollary 6. A POVM with d2 elements is necessarily a rank-one ‘informationally complete’
POVM.

By definition, an informationally complete POVM P = {Pe} [11] has elements Pe which span
the space of all operators on H, thus allowing the estimation of any ensemble average using the
same fixed apparatus. The fact that a POVM with d2 elements necessarily is rank-one is stated
in corollary 2, whereas corollary 5 assures that all POVMs elements are linearly independent,
whence the set of d2 linearly independent operators Pe is obviously complete for dimension
d. In section 5 we will give an explicit example of such an extremal informationally complete
POVM.

For rank greater than one we have only the necessary condition

Corollary 7. If the POVM is extremal, then its non-vanishing elements are necessarily linearly
independent.

In fact, according to theorem 2 the projectors on the eigenvectors must be linearly independent,
whence also the operators Pe. Indeed, for linearly dependent elements there exist coefficients
λe not all vanishing such that

∑
e∈E λePe = 0, and without loss of generality we can take

−1 � λe � 1. Therefore, the POVM can be written as convex combination P = 1
2 P− + 1

2 P+,
with P ±

e = (1 ± λe)Pe, and P− �= P+ (since the λe are not all vanishing).
In the appendix we report an algorithm for decomposing a given POVM into extremal.

3. Extremal POVMs for qubits

Using the above results we will give a classification of extremal POVMs for qubits. In this
case, corollary 1 implies that the extremal POVMs cannot have more than four elements, and
that, apart from the trivial POVM P = I , they must be made of rank-one projectors (otherwise
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Supp(Pe) for different e ∈ E would not be mutually disjoint). Now, upon writing the POVM
elements in the Bloch form

Pe = αe (I + �ne · �σ) , (8)

the constraints for normalization and positivity read

αe > 0,
∑

e

αe = 1,
∑

e

αe�ne = 0. (9)

The case of two outcomes corresponds simply to the usual observable Pe = |e〉�n�n〈e|, e = 0, 1,
with |e〉�n eigenvector of �n· �σ corresponding to the eigenvalues +1,−1, respectively. In fact, for
two outcomes one has α0�n0 +α1�n1 = 0, namely �n0 = −�n1

.= �n, and necessarily α0 = α1 = 1
2 .

We now consider the cases of three and four elements. By theorem 2 a necessary and sufficient
condition for extremality is

∑

e∈E

γeαe(I + �ne · �σ) = 0 ⇐⇒ γe = 0 ∀e ∈ E, (10)

or, equivalently,
∑

e∈E

γeαe = 0,
∑

e∈E

γeαe�ne = 0 ⇐⇒ γe = 0 ∀e ∈ E. (11)

For three outcomes, equation (9) implies that {αe�ne}e∈E represent the edges of a triangle, and
thus the second condition in equation (11) is satisfied iff γe ≡ γ is independent of e. Then
the first condition is satisfied iff γ ≡ 0. Therefore, all three outcomes rank-one POVMs
with pairwise non-proportional elements are extremal. For four outcomes we can see that
for an extremal POVM the corresponding unit vectors {�ne}e∈E cannot lie on a common plane.
Indeed, divide the four vectors {αe�ne}e∈E into two couples, which identify two intersecting
planes. Then, the third condition in equation (9) implies that the sums of the couples lie on the
intersection of the planes and have the same length and opposite direction. If we multiply by
independent scalars γe the two elements of a couple, their sum changes direction and lies no
longer in the intersection of the two planes, and the second condition in equation (11) cannot
be satisfied. Therefore, the two elements of the same couple must be multiplied by the same
scalar, which then just rescales their sum. Now, when the rescaling factors are different for
the two couples, the two partial sums no longer do sum to the null vector. Then necessarily
γe ≡ γ independently of e. In order to satisfy also the first condition in equation (11) we must
have γ = 0. On the other hand, if the four unit vectors lie in the same plane, a non-trivial
linear combination can always be found that equals the null operator, hence the POVM is not
extremal. By the first condition in equation (11) we have indeed

γ0α0 = −
∑

e=1,2,3

γeαe, (12)

then the second condition can be written as∑

e=1,2,3

γeαe(�ne − �n0) = 0. (13)

Now, either we have a couple of equal vectors �ne, or the three vectors �ne − �n0 in a two-
dimensional plane are linearly dependent. However, in both cases the POVM is not extremal,
because in the former case two elements are proportional, while in the latter a non-trivial triple
of coefficients γe satisfying equation (13) exists.

Note that the three- and four-outcomes POVMs are necessarily unsharp, i.e. there is no
state with probability distribution p(e|ρ) = δe,ē for a fixed ē. They provide examples of
un-sharp POVMs with purely intrinsical quantum noise.
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4. The boundary of the convex set of POVMs

In this section we generalize the results about extremality, and give a full characterization of
the elements on the boundary of the convex set of n-outcomes POVMs on the Hilbert space H.
Let start from an intuitive geometrical definition of the boundary of a convex set. Consider for
example a point lying on some face of a polyhedron. Then there exists a direction (e.g. normal
to the face) such that any shift of the point along that direction will bring it inside the convex
set, while in the opposite direction it will bring the point outside the convex. In mathematical
terms, consider a convex set C and an element p ∈ C . Then, p belongs to the boundary ∂C
of C if and only if there exists q ∈ C such that

p + ε(q − p) ∈ C , p − ε(q − p) �∈ C , ∀ε ∈ [0, 1]. (14)

This definition leads to the following characterization of the boundary of the convex set of
N-outcomes POVMs.

Theorem 4. A POVM P ∈ PN belongs to the boundary of PN iff at least one element Pf of
P has a non-trivial kernel.

Let us first prove necessity. Consider two different POVMs P and Q, and suppose
that ∀ε ∈ [0, 1] P + εD is still a POVM while P − εD is not. This happens only if
∀ε ∈ [0, 1]Pf − εDf �� 0 for some f . Then some vector ψ must exist such that

〈ψ |Pf |ψ〉 < ε〈ψ |Df |ψ〉, ∀ε ∈ [0, 1], (15)

namely 〈ψ |Pf |ψ〉 = 0. Since by hypothesis Pf is positive semidefinite, then necessarily
ψ ∈ Ker(Pf ). To prove that the condition is also sufficient, consider a POVM element
Pf with non-trivial kernel, and take ψ ∈ Ker(Pf ). Then consider an event g such
that 〈ψ |Pg|ψ〉 > 0 (such event must exist for normalization of the POVM), and take
Df = κ|ψ〉〈ψ |, Dg = −κ|ψ〉〈ψ |, and De = 0 otherwise, with κ smaller than the minimum
eigenvalue of Pg . Clearly ∀ε ∈ [0, 1]P + εD is a POVM while P − εD is not, since the element
Pf − εDf is not positive semidefinite.

We now proceed to study the structure of the faces of PN . For such a purpose it is
convenient to regard a convex set as a subset of an affine space, whose dimension is the
number of linearly independent directions along which any internal point can symmetrically
be shifted. Clearly, also the faces of the convex set are themselves convex. For example,
moving from a point inside a cube one can explore three dimensions while remaining inside,
whereas, for the cube faces the number of independent symmetric perturbations is two, and
for the sides this number reduces to one. We will keep in mind the above geometrical picture
for the classification of the border of the convex set of POVMs using the perturbation method.

According to the results of section 2, a perturbation for a POVM P is a set of Hermitian
operators D = {De} with

∑
e∈E De = 0, and with Supp(De) ⊆ Supp(Pe). Expressed in the

orthonormal basis of eigenvectors of the POVM elements as in equation (5), the operators De

read

De =
rank(Pe)∑

mn=1

D(e)
mn

∣∣v(e)
m

〉 〈
v(e)

n

∣∣. (16)

We recall that, according to theorem 2, non-trivial perturbations for P exist only if the outer
products

∣∣v(e)
m

〉 〈
v(e)

n

∣∣ are linearly dependent with e ∈ E and 1 � n,m � rank(Pe). The total
number of such outer products is

r(P)
.=

∑

e∈E

rank(Pe)
2. (17)
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The number of linearly independent elements in the set of outer products
∣∣v(e)

m

〉 〈
v(e)

n

∣∣ is given
by

l(P)
.= dim

[
Span

({∣∣v(e)
m

〉 〈
v(e)

n

∣∣})]. (18)

Now, as in theorem 4, we see that the number b(P) of independent perturbations for P is given
by

b(P) = r(P) − l(P). (19)

In fact, in equation (5) we have r(P) = ∑
e∈E rank(Pe)

2 variables D(e)
nm, whereas the number

of linearly independent equations is l(P) = dim
(
Span

({∣∣v(e)
m

〉 〈
v(e)

n

∣∣})), whence the number
of variables which can be written as linear combination of a linearly independent set is
r(P) − l(P). On the other hand, the dimension of the affine space of the convex set PN is
given by d2(N − 1), since the POVM normalization constraint corresponds to d2 independent
linear equations, with Nd2 variables. We have then proved the following characterization of
the border of PN .

Theorem 5. A POVM P ∈ PN belongs to the boundary ∂PN of PN iff b(P) <

d2(N − 1), b(P) defined in equations (17)–(19) being the dimension of the face in which
P lies.

From the above theorem it also follows that a POVM P ∈ PN on the boundary ∂PN of PN

also belongs to ∂PM with M � N , whence it belongs to the boundary ∂P of P . This also
implies that ∂PN ⊆ ∂PM ⊆ ∂P .

5. Extremal informationally complete POVMs

In this section we will give an explicit construction of a rank-one informationally complete
POVM as in corollary 6, in this way also proving the existence of extremal POVMs with d2

elements.
Consider the shift-and-multiply finite group of unitary operators

Upq = ZpWq, p, q ∈ Zd (20)

where Zd = {0, 1, . . . , d − 1}, and Z and W are defined as follows,

Z =
∑

j

|j ⊕ 1〉〈j |, W =
∑

j

ωj |j 〉〈j |, (21)

with ⊕ denoting the sum modulo d, {|j 〉}d−1
0 an orthonormal basis, ω = e

2π i
d , and the sums

are extended to Zd . We now prove that the following POVM with d2 outcomes is extremal

Ppq
.= 1

d
UpqνU †

pq, (22)

for any pure state ν = |ψ〉〈ψ | on H satisfying the constraints

Tr
[
U †

pqν
] �= 0, ∀p, q ∈ Zd . (23)

In order to prove the statement, first we note that the operators d− 1
2 Upq form a complete

orthonormal set of unitary operators, i.e. they satisfy

Tr[UpqUp′,q ′ ] = dδpp′δqq ′ , (24)
∑

pq

Upq�U †
pq = d Tr[�], (25)
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for any operator �. From equation (25) it immediately follows that
∑

pqPpq = I , whence
{Ppq} is a POVM. Then, in order to prove extremality, according to corollary 5 it is sufficient
to prove that the d2 operators Ppq are linearly independent, which in turn can be proved by
showing that {Ppq} is itself a complete set in the space of operators (completeness along with
the fact that the elements Ppq are d2 implies indeed that they are linearly independent). As
mentioned after corollary 6, such a kind of completeness for the POVM corresponds to a
so-called informationally complete measurement [11]. The completeness of the set {Ppq} is
equivalent to the invertibility of the following operator on H⊗2,

F =
∑

pq

|Ppq〉〉〈〈Ppq |, (26)

where the double-ket notation [14] is used to recall the equivalence between (Hilbert–Schmidt)
operators A on H and vectors |A〉〉 = A ⊗ I |I 〉〉 of H⊗2, |I 〉〉 ∈ H⊗2 denoting the reference
vector |I 〉〉 = ∑

j∈Zd
|j 〉 ⊗ |j 〉 defined in terms of the chosen orthonormal basis {|j 〉}. By

expanding ν = |ψ〉〈ψ | over the basis {Upq} and using the multiplication rules of the group,
one obtains

Ppq = 1

d2

∑

rs

e
2π i
d

(qr−ps) Tr
[
U †

rsν
]
Urs, (27)

which allows us to rewrite equation (26) as follows:

F = 1

d2

∑

rs

∣∣ Tr
[
U †

rsν
]∣∣2|Urs〉〉〈〈Urs |. (28)

Since {Upq〉〉} is an orthogonal basis in H⊗2, the invertibility of F is equivalent to condition (23),
which is clearly satisfied by most density operators ν = |ψ〉〈ψ | (condition (23) is satisfied by
a set of states |ψ〉 that is dense in H). As an example of state satisfying condition (23), one
can consider |ψ〉 ∝ ∑

j αj |j 〉 for 0 < α < 1.

6. Conclusions

In this paper we have completely characterized the convex set of POVMs with discrete
spectrum. Using the method of perturbations, we have determined the extremal points—
the ‘indecomposable apparatuses’—by three alternative characterizations corresponding to
theorems 1–3, and with easier necessary or sufficient conditions in corollaries 1–7. In
particular, we have shown that for finite dimension d an extremal POVMs can have at most
d2 outcomes, and an extremal POVM with d2 outcomes always exists and is necessarily
informationally complete. An explicit realization of such extremal informationally complete
POVM has been given in section 3.

The characterization of the convex set PN of POVMs with N outcomes has been obtained
by determining its boundary ∂PN , which, in turn, has been characterized in terms of the
number b(P) of independent perturbations for the POVM P in equation (19). This has led to
a simple characterization of the boundary in terms of simple algebraic properties of a POVM
lying on it. Since ∂PN is also a subset of the boundary ∂P of the full convex set P of
POVMs with discrete spectrum, our result also provides a complete characterization of P .

Finally, in the appendix we reported an algorithm for decomposing a point in a convex
set into a minimum number of extremal elements, specializing the algorithm to the case of the
convex set PN of POVMs with N outcomes.
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Appendix. Algorithm for decomposition of internal points into extremals

In this appendix we provide an algorithm to decompose a POVM P ∈ PN into extremal
ones. We first present the algorithm in the general case of an abstract convex set, and then we
specialize it to the case of POVMs.

Consider a convex set C and a point p inside it. We want to decompose p into extremal
points. We first need two ingredients, which depend on the specific convex set C under
consideration: the affine space A in which C is embedded (this is just the space of legitimate
‘perturbations’), and an ‘indicator’ ι(p) which is positive for p ∈ C , zero on the boundary,
and negative outside C . Now, starting from p inside C , we move in some direction d in A
until a face of C is encountered at λ+

.= max{λ : p + λd ∈ C } (using our indicator λ+ is given
by the value of λ where ι(p + λd) changes sign). Similarly in the opposite direction one hits
the boundary at λ−

.= max{λ : p − λd ∈ C }. The point p can now be split into the convex
combination

p = λ−
λ+ + λ−

p+ +
λ+

λ+ + λ−
p−, p±

.= p ± λ±d. (A.1)

If p was in the interior of C any face of the boundary can be encountered, while if p was
already on the boundary of C the perturbation d brings p on a ‘face of a face’, e.g. moving
on a face of a cube towards an edge. In any case, the dimension b(p) of the face to which p
belongs is decreased at least by one.

By applying the same splitting scheme to both p± recursively, we obtain a weighted binary
‘tree’ of points rooted in p, with the property that the point p′ at each node can be written as
convex combination of its descendants, and with a depth bounded by the dimension b(p) of
the face to which p belongs. Of course the ‘leaves’ of the tree are extremal points pi , and one
can combine them to obtain the original point as p = ∑

i αipi weighting each leaf pi with the
product αi of all weights found along the path from the root p to the leaf pi . Unfortunately,
this raw algorithm can produce up to 2r extremal points pi , for dimension r of the affine space
of C , each leaf being addressed by the vector di = p − pi , with

∑
i αidi = 0. However,

by the Carathéodory’s theorem [15], we know that at most r + 1 extremal points are needed
to decompose p. Indeed, if the number of di is larger than r + 1, then they must be linearly
dependent, and there must exist λi not all vanishing and not all positive such that

∑
i λidi = 0.

Since
∑

i αidi −µ
( ∑

i λidi

) = 0, by choosing the greatest µ such that αi −µλi � 0 ∀i, one
finds that 0 can be written as a convex combination of a smaller number of di . This procedure
can be applied repeatedly to the remaining di (the αi must also be upgraded) until their only
combination giving 0 is the one whose coefficients are all positive: at this point their number
is for sure not larger than r + 1. Therefore, from an initial decomposition with many elements,
we end up with a decomposition of p into at most r + 1 vectors di and probabilities αi such
that

∑r+1
i=1 αidi = 0, whence p = ∑r+1

i=1 αi(p + di) = ∑r+1
i=1 αipi . Note that the evaluation of

λ± at each step involves an eigenvalue evaluation, whence the algorithm generally does not
provide analytical decompositions.

In order to specialize the algorithm to the case of the POVMs convex set PN , we
need to specify both the corresponding affine space AN and the indicator ι of the border.
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The affine space is the real d2(N − 1)-dimensional linear space of vectors D = {De} of
N Hermitian operators De, with

∑
e∈E De = 0. This can be obtained as the real span of

projectors |n, e〉〈n, e| along with Re|n, e〉〈m, e| and Im|n, e〉〈m, e| for n = 1, . . . , d and
n < m, where X = Re X + i Im X is the Cartesian decomposition of the operator X, {|n, e〉}
denotes any orthonormal basis for the eth copy of the Hilbert space H of the quantum system
with d = dim(H), and e ∈ E′ .= E/{1}, and D1 = −∑

e∈E′ diagDe. However, if such global
basis is used, then when the search algorithm starts from a POVM which is already on a face of
the convex one has the problem that generally the basis is not aligned with the face itself, and
for a generic direction the perturbed POVM either exits from the convex, or it moves inside it.
For that reason it is convenient to consider a ‘local basis’ of perturbations for a given P. This
can be constructed by considering the set {X(e)

m,n} of Hermitian operators defined as follows:

X(e)
mn = Re

∣∣v(e)
m

〉 〈
v(e)

n

∣∣, X(e)
nm = Im

∣∣v(e)
m

〉 〈
v(e)

n

∣∣, n < m

X(e)
nn = ∣∣v(e)

n

〉 〈
v(e)

n

∣∣.
(A.2)

Then pick up l(P) linearly independent elements, which we will denote by V (e)
mn , and call the

remaining ones W
(f )
mn , so that we can write

W(f )
mn =

∑

epq

cf mn
epq V (e)

pq ≡
∑

e �=f

∑

pq

cf mn
epq V (e)

pq , (A.3)

where the second identity is a consequence of linear independence of operators
{∣∣v(e)

m

〉 〈
v(e)

n

∣∣}

for fixed e. Then we can construct the following basis {De(f mn)} for P perturbations

Df (f mn) =
∑

pq

c
f mn

fpq V (f )
pq − W(f )

mn ,

De(f mn) =
∑

pq

cf mn
epq V (e)

pq .
(A.4)

Clearly one has
∑

e∈S De(f mn) = 0 ∀f mn, and modulo a suitable rescaling one has
Pe ± De(f mn) � 0 ∀f mn. Notice that, by construction, the operators De(f nm) are linearly
independent. In fact, using equations (A.4), a generic linear combination of De(f mn) for
each fixed e ∈ E will result in a linear combination of

{
V (e)

mn

} ∪ {
W(e)

pq

}
for the same e. But the

set
{
V (e)

mn

} ∪ {
W(e)

pq

}
is linearly independent for fixed e ∈ E, due to equation (A.4).

As regards the indicator of the boundary, this is simply the minimum of the eigenvalues
of the operators Pe, which changes from positive to negative when P crosses the border.
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