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CHAPTER 33

Homodyning as Universal Detection

Giacomo Mauro D’Ariano

Abstract. Homodyne tomography—i.e., homodyning while scanning
the local oscillator phase—is now a well assessed method for “measur-
ing” the quantum state. In this paper I will show how it can be used
as a kind of universal detection, for measuring generic field operators,
however at expense of some additional noise. The general class of field
operators that can be measured in this way is presented, and includes
also operators that are inaccessible to heterodyne detection. The noise
from tomographical homodyning is compared to that from heterodyn-
ing, for those operators that can be measured in both ways. It turns out
that for some operators homodyning is better than heterodyning when
the mean photon number is sufficiently small. Finally, the robustness of
the method to additive phase-insensitive noise is analyzed. It is shown
that just half photon of thermal noise would spoil the measurement
completely.

1. Introduction

Homodyne tomography is the only viable method currently known for de-
termining the detailed state of a quantum harmonic oscillator—a mode of
the electromagnetic field. The state measurement is achieved by repeating
many homodyne measurements at different phases ϕ with respect to the lo-
cal oscillator (LO). The experimental work of the group in Eugene-Oregon
[18] undoubtedly established the feasibility of the method, even though the
earlier data analysis were based on a filtered procedure that affected the
results with systematic errors. Later, the theoretical group in Pavia-Italy
presented an exact reconstruction algorithm [7], which is the method cur-
rently adopted in actual experiments (see, for example, Refs. [16] and [17]).
The reconstruction algorithm of Ref. [7] was later greatly simplified [5], so
that it was possible also to recognize the feasibility of the method even for
nonideal quantum efficiency η < 1 at the homodyne detector, and, at the
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same time, establishing lower bounds for η for any given matrix represen-
tation. After these first results, further theoretical progress has been made,
understanding the mechanisms that underly the generation of statistical
errors [2], thus limiting the sensitivity of the method. More recently, for
η = 1 non trivial factorization formulas have been recognized [19, 14] for
the “pattern functions” [15] that are necessary to reconstruct the photon
statistics.

In this paper I will show how homodyne tomography can also be used
as a method for measuring generic field operators. In fact, due to statistical
errors, the measured matrix elements cannot be used to obtain expecta-
tions of field operators, and a different algorithm for analyzing homodyne
data is needed suited to the particular field operator whose expectation one
wants to estimate. Here, I will present an algorithm valid for any operator
that admits a normal ordered expansion, giving the general class of oper-
ators that can be measured in this way, also as a function of the quantum
efficiency η. Hence, from the same bunch of homodyne experimental data,
now one can obtain not only the density matrix of the state, but also the
expectation value of various field operators, including some operators that
are inaccessible to heterodyne detection. However, the price to pay for such
detection flexibility is that all measured quantities will be affected by noise.
But, if one compares this noise with that from heterodyning (for those op-
erators that can be measured in both ways), it turns out that for some
operators homodyning is less noisy than heterodyning, at least for small
mean photon numbers.

Finally, I will show that the method of homodyne tomography is quite
robust to sources of additive noise. Focusing attention on the most common
situation in which the noise is Gaussian and independent on the LO phase,
I will show that this kind of noise produces the same effect of nonunit
quantum efficiency at detectors. Generalizing the result of Ref. [5], I will
give bounds for the overall rms noise level below which the tomographical
reconstruction is still possible. I will show that the smearing effect of half
photon of thermal noise in average is sufficient to completely spoil the
measurement, making the experimental errors growing up unbounded.

2. Short Up-to-date Review on Homodyne Tomography

The homodyne tomography method is designed to obtain a general ma-
trix element 〈ψ|�̂|ϕ〉 in form of expectation of a function of the homodyne
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outcomes at different phases with respect to the LO. In equations, one has

〈ψ|�̂|ϕ〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x;ϕ) fψϕ(x;ϕ) , (1)

where p(x;ϕ) denotes the probability distribution of the outcome x of the
quadrature x̂ϕ = 1

2

(
a†eiϕ + ae−iϕ

)
of the field mode with particle operators

a and a† at phase ϕ with respect to the LO. Notice that it is sufficient to
average only over ϕ ∈ [0, π], due to the symmetry x̂ϕ+π = −x̂ϕ. One
wants the function fψϕ(x;ϕ) bounded for all x, whence every moment will
be bounded for any possible (a priori unknown) probability distribution
p(x;ϕ). Then, according to the central-limit theorem, one is guaranteed
that the integral in Eq. (1) can be sampled statistically over a sufficiently
large set of data, and the average values for different experiments will be
Gaussian distributed, allowing estimation of confidence intervals. If, on the
other hand, the kernel fψϕ(x;ϕ) turns out to be unbounded, then we will
say that the matrix element cannot be measured by homodyne tomography.

The easiest way to obtain the integral kernel fψϕ(x;ϕ) is starting from
the operator identity

�̂ =
∫
d2α

π
Tr(�̂e−αa+αa

†
) e−αa

†+αa (2)

which, by changing to polar variables α = (i/2)keiϕ, becomes

�̂ =
∫ π

0

dϕ

π

∫ +∞

−∞

dk |k|
4

Tr(�̂eikx̂ϕ) e−ikx̂ϕ . (3)

Equation (2) is nothing but the operator form of the Fourier-transform
relation between Wigner function and characteristic function: it can also
be considered as an operator form of the Moyal identity∫

d2z

π
〈k|D̂†(z)|m〉〈l|D̂(z)|n〉 = 〈k|n〉〈l|m〉 . (4)

The trace-average in Eq. (3) can be evaluated in terms of p(x, ϕ), using
the complete set {|x〉ϕ} of eigenvectors of x̂ϕ, and exchanging the integrals
over x and k. One obtains

�̂ =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x;ϕ)K(x− x̂ϕ) , (5)

where the integral kernel K(x) is given by

K(x) = −1
2
P

1
x2
≡ − lim

ε→0+

1
2
Re

1
(x+ iε)2

, (6)
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P denoting the Cauchy principal value. Taking matrix elements of both
sides of Eq. (5) between vectors ψ and ϕ, we obtain the sampling formula
we were looking for, namely

〈ψ|�̂|ϕ〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x;ϕ)〈ψ|K(x− x̂ϕ)|ϕ〉 . (7)

Hence, the matrix element 〈ψ|�̂|ϕ〉 is obtained by averaging the function
fψϕ(x;ϕ) ≡ 〈ψ|K(x− x̂ϕ)|ϕ〉 over homodyne data at different phases ϕ. As
we will see soon, despite K(x) is unbounded, for particular vectors ψ and ϕ
in the Hilbert space the matrix element 〈ψ|K(x− x̂ϕ)|ϕ〉 is bounded, and
thus the integral (7) can be sampled experimentally.

Before analyzing specific matrix representations, I recall how the sam-
pling formula (7) can be generalized to the case of nonunit quantum effi-
ciency. Low efficiency homodyne detection simply produces a probability
pη(x;ϕ) that is a Gaussian convolution of the ideal probability p(x;ϕ) for
η = 1 (see, for example, Ref. [3]). In terms of the generating functions of
the x̂ϕ-moments one has∫ +∞

−∞
dx pη(x;ϕ)eikx = exp

(
−1− η

8η
k2

) ∫ +∞

−∞
dx p(x;ϕ)eikx . (8)

Upon substituting Eq. (8) into Eq. (3), and by following the same lines that
lead us to Eq. (5), one obtains the operator identity

�̂ =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη(x;ϕ)Kη(x− x̂ϕ) , (9)

where now the kernel reads

Kη(x) =
1
2
Re
∫ +∞

0

dk k exp
(

1− η
8η

k2 + ikx

)
. (10)

The desired sampling formula for 〈ψ|�̂|ϕ〉 is obtained again as in Eq. (7), by
taking matrix elements of both sides of Eq. (10). Notice that now the kernel
Kη(x) is not even a tempered distribution: however, as we will see immedi-
ately, the matrix elements of Kη(x− x̂ϕ) are bounded for some representa-
tions, depending on the value of η. The matrix elements 〈ψ|Kη(x− âϕ)|ϕ〉
are bounded if the following inequality is satisfied for all phases ϕ ∈ [0, π]

η >
1

1 + 4ε2(ϕ)
, (11)

where ε2(ϕ) is the harmonic mean
2

ε2(ϕ)
=

1
ε2ψ(ϕ)

+
1

ε2ϕ(ϕ)
, (12)
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and ε2υ(ϕ) is the “resolution” of the vector |υ〉 in the x̂ϕ-representation,
namely:

|ϕ〈x|υ〉|2  exp
[
− x2

2ε2υ(ϕ)

]
. (13)

In Eq. (13) the symbol  stands for the leading term as a function of x,
and |x〉ϕ ≡ eia

†aϕ|x〉 denote eigen-ket of the quadrature x̂ϕ for eigenvalue
x. Upon maximizing Eq. (11) with respect to ϕ one obtains the bound

η >
1

1 + 4ε2
, ε2 = min

ϕ∈[0,π]
{ε2(ϕ)} . (14)

One can easily see that the bound is η > 1/2 for both number-state and
coherent-state representations, whereas it is η > (1 + s2)−1 ≥ 1/2 for
squeezed-state representations with minimum squeezing factor s < 1. On
the other hand, for the quadrature representation one has η > 1, which
means that this matrix representation cannot be measured. The value
η = 1/2 is actually an absolute bound for all representations satisfying
the “Heisenberg relation” ε(ϕ)ε(ϕ+ π

2 ) ≥ 1
4 with the equal sign, which in-

clude all known representations (for a discussion on the existence of exotic
representations see Ref. [4]). Here, I want to emphasize that the existence
of such a lower bound for quantum efficiency is actually of fundamental
relevance, as it prevents measuring the wave function of a single system
using schemes of weak repeated indirect measurements on the same system
[10].

At the end of this section, from Ref. [5] I report for completeness the
kernel 〈n|K(x − x̂ϕ)|m〉 for matrix elements between number eigenstates.
One has

〈n|Kη(x− x̂ϕ)|n+ d〉 = e−idϕ2κd+2

√
n!

(n+ d)!
e−κ

2x2
(15)

×
n∑
ν=0

(−)ν

ν!

(
n+ d

n− ν

)
(2ν + d+ 1)!κ2νRe

{
(−i)dD−(2ν+d+2)(−2iκx)

}
,

where κ =
√
η/(2η − 1), andDσ(z) denotes the parabolic cylinder function.

For η = 1 the kernel factorizes as follows [19, 14]

〈n|K(x− x̂ϕ)|n+ d〉
=e−idϕ[2xun(x)vn+d(x)−

√
n+1un+1(x)vn+d(x)−

√
m+1un(x)vn+d+1(x)] ,

(16)
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where un(x) and vn(x) are the regular and irregular energy eigen-functions
of the harmonic oscillator

uj(x) =
1√
j!

(
x− ∂x

2

)j ( 2
π

)1/4

e−x
2
,

vj(x) =
1√
j!

(
x− ∂x

2

)j
(2π)1/4 e−x

2
∫ √

2x

0

dt et
2
. (17)

3. Measuring Generic Field Operators

Homodyne tomography provides the maximum achievable information on
the quantum state, and, in principle, the knowledge of the density matrix
should allow one to calculate the expectation value 〈Ô〉 = Tr[Ô�̂] of any
observable Ô. However, this is generally true only when one has an analytic
knowledge of the density matrix, but it is not true when the matrix has
been obtained experimentally. In fact, the Hilbert space is actually infinite
dimensional, whereas experimentally one can achieve only a finite matrix,
each element being affected by an experimental error. Notice that, even
though the method allows one to extract any matrix element in the Hilbert
space from the same bunch of experimental data, however, it is the way
in which errors converge in the Hilbert space that determines the actual
possibility of estimating the trace Tr[Ô�̂]. To make things more concrete,
let us fix the case of the number representation, and suppose we want to
estimate the average photon number 〈a†a〉. In Ref. [9] it has been shown that
for nonunit quantum efficiency the statistical error for the diagonal matrix
element 〈n|�̂|n〉 diverges faster than exponentially versus n, whereas for
η = 1 the error saturates for large n to the universal value εn =

√
2/N that

depends only on the number N of experimental data, but is independent
on both n and on the quantum state. Even for the unrealistic case η =
1, one can see immediately that the estimated expectation value 〈a†a〉 =∑H−1
n=0 n�nn based on the measured matrix elements �nn, is not guaranteed

to converge versus the truncated-space dimension H, because the error on
�nn is nonvanishing versus n. Clearly in this way I am not proving that the
expectation 〈a†a〉 is unobtainable from homodyne data, because matrix
errors convergence depends on the chosen representation basis, whence the
ineffectiveness of the method may rely in the data processing, more than
in the actual information contained in the bunch of experimental data.
Therefore, the question is: is it possible to estimate a generic expectation
value 〈Ô〉 directly from homodyne data, without using the measured density
matrix? As we will see soon, the answer is positive in most cases of interest,
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and the procedure for estimating the expectation 〈Ô〉 will be referred to as
homodyning the observable Ô.

By homodyning the observable Ô I mean averaging an appropriate ker-
nel function R[Ô](x;ϕ) (independent on the state �̂) over the experimental
homodyne data, achieving in this way the expectation value of the observ-
able 〈Ô〉 for every state �̂. Hence, the kernel function R[Ô](x;ϕ) is defined
through the identity

〈Ô〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x;ϕ)R[Ô](x;ϕ) . (18)

From the definition of R[Ô](x;ϕ) in Eq. (18), and from Eqs. (2) and (3)—
which generally hold true for any Hilbert-Schmidt operator in place of �̂—
one obtains

Ô =
∫ π

0

dϕ

π

∫ +∞

−∞
dxR[Ô](x;ϕ)|x〉ϕϕ〈x| , (19)

with the kernel R[Ô](x;ϕ) given by

R[Ô](x;ϕ) = Tr[ÔK(x− x̂ϕ)] , (20)

and K(x) given in Eq. (6). The validity of Eq. (20), however, is limited
only to the case of a Hilbert-Schmidt operator Ô, otherwise it is ill defined.
Nevertheless, one can obtain the explicit form of the kernel R[Ô](x;ϕ) in
a different way. Starting from the identity involving trilinear products of
Hermite polynomials [11]∫ +∞

−∞
dx e−x

2
Hk(x)Hm(x)Hn(x) =

2
m+n+k

2 π
1
2 k!m!n!

(s− k)!(s−m)!(s− n)!
, (21)

for k +m+ n = 2s even .

Richter proved the following nontrivial formula for the expectation value of
the normally ordered field operators [20]

〈a†nam〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x;ϕ)ei(m−n)ϕ Hn+m(

√
2x)√

2n+m
(
n+m
n

) , (22)

which corresponds to the kernel

R[a†nam](x;ϕ) = ei(m−n)ϕ Hn+m(
√

2x)√
2n+m
(
n+m
n

) . (23)

This result can be easily extended to the case of nonunit quantum efficiency
η < 1, as the normally ordered expectation 〈a†nam〉 just gets an extra factor
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η
1
2 (n+m). Therefore, one has

Rη[a†nam](x;ϕ) = ei(m−n)ϕ Hn+m(
√

2x)√
(2η)n+m

(
n+m
n

) , (24)

where the kernel Rη[Ô](x;ϕ) is defined as in Eq. (18), but with the experi-
mental probability distribution pη(x;ϕ). From Eq. (24) by linearity on can
obtain the kernel Rη[f̂ ](x;ϕ) for any operator function f̂ that has normal
ordered expansion

f̂ ≡ f(a, a†) =
∞∑

nm=0

f (n)
nma

†nam . (25)

From Eq. (24) one obtains

Rη[f̂ ](x;ϕ) =
∞∑
s=0

Hs(
√

2x)
s!(2η)s/2

∞∑
nm=0

f (n)
nme

i(m−n)ϕn!m!δn+m,s

=
∞∑
s=0

Hs(
√

2x)is

s!(2η)s/2
ds

dvs

∣∣∣∣∣
v=0

F [f̂ ](v;ϕ), (26)

where

F [f̂ ](v;ϕ) =
∞∑

nm=0

f (n)
nm

(
n+m

m

)−1

(−iv)n+mei(m−n)ϕ . (27)

Continuing from Eq. (26) one obtains

Rη[f̂ ](x;ϕ) = exp
(

1
2η

d2

dv2
+

2ix
√
η

d

dv

) ∣∣∣∣∣
v=0

F [f̂ ](v;ϕ) , (28)

and finally

Rη[f̂ ](x;ϕ) =
∫ +∞

−∞

dw√
2πη−1

e−
η
2w

2
F [f̂ ](w + 2ix/

√
η;ϕ) . (29)

Hence one concludes that the operator f̂ can be measured by homo-
dyne tomography if the function F [f̂ ](v;ϕ) in Eq. (27) grows slower than
exp(−ηv2/2) for v →∞, and the integral in Eq. (29) grows at most expo-
nentially for x→∞ (assuming p(x;ϕ) goes to zero faster than exponentially
at x→∞).

In Table 3 I report the kernelRη[Ô](x;ϕ) for some operators Ô. One can
see that for the raising operator ê+ the kernel diverges at η = 1/2+, namely
it can be measured only for η > 1/2. The operator Ŵs in the same table
gives the generalized Wigner function Ws(α, ᾱ) for ordering parameter s
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through the identity Ws(α, ᾱ) = Tr[D̂(α)�̂D̂†(α)Ŵs]. From the expression
of Rη[Ŵs](x;ϕ) it follows that by homodyning with quantum efficiency η

one can measure the generalized Wigner function only for s < 1 − η−1: in
particular, as already noticed in Refs. [5], the usual Wigner function for
s = 0 cannot be measured for any quantum efficiency [in fact one would
have R1[D̂†(α)Ŵ0D̂(α)](x;ϕ) = K[x− Re(αe−iϕ)], with K(x) unbounded
as given in Eq. (6)].

Ô Rη[Ô](x; ϕ)

(1) a†nam ei(m−n)ϕ Hn+m(
√

2x)√
2n+m

�n+m
n

	
(2) a 2eiϕx

(3) a2 e2iϕ(4x2 − 1)

(4) a†a 2x2 − 1
2

(5) (a†a)2 8
3x4 − 2x2

(6) : D̂†(α) :
.
= e−αa

†
eαa

exp[− 1
2η (αeiϕ)2+ 2x√

ηαe
iϕ]

1+ α
α
e−2iϕ

+
exp[− 1

2η (αe−iϕ)2− 2x√
ηαe

−iϕ]

1+α
α e

2iϕ

(7) ê+
.
= a† 1√

1+a†a

2xe−iϕ 1√
2πη


+∞
−∞ dv

× e−v2

(1+z)2
Φ
�
2, 3

2 ; x2

1+z−1

�
,

z = e−v2−1
2η

(8) Ŵs
.
= 2

π(1−s)
�
s+1
s−1

�a†a  ∞

0
dt

2e−t

π(1 − s) − 1
η

cos

�
2

�
2t

(1− s) − 1
η

x

�

(9) |n + d〉〈n| 〈n|K(x − x̂ϕ)|n + d〉 in Eqs. (15) and (16)

Table 1: Kernel Rη [Ô](x;ϕ), as defined in Eq. (18), for some operators Ô. [The symbol
Φ(a, b;x) denotes the customary confluent hypergeometric function.]

3.1. Comparison between homodyne tomography and

heterodyning

We have seen that from the same bunch of homodyne tomography data,
not only one can recover the density matrix of the field, but also one can
measure any field observable f̂ ≡ f(a, a†) having normal ordered expansion
f̂ ≡ f (n)(a, a†) =

∑∞
nm=0 f

(n)
nma†nam and bounded integral in Eq. (29)—

this holds true in particular for any polynomial function of the annihi-
lation and creation operators. This situation can be compared with the
case of heterodyne detection, where again one measures general field ob-
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servables, but admitting anti-normal ordered expansion f̂ ≡ f (a)(a, a†) =∑∞
nm=0 f

(a)
nmama†n, in which case the expectation value is obtained through

the heterodyne average

〈f̂〉 =
∫
d2α

π
f (a)(α,α)〈α|�̂|α〉 . (30)

For η = 1 the heterodyne probability is just the Q-function Q(α,α) =
1
π 〈α|�̂|α〉, whereas for η = 1 it will be Gaussian convoluted. As shown by
Baltin [1], generally the anti-normal expansion either is not defined, or is
not consistent on the Fock basis, namely f (a)(a, a†)|n〉 has infinite norm
or is different from f̂(a, a†)|n〉 for some n ≥ 0. In particular, let us focus
attention on functions of the number operator f(a†a) =

∑∞
l=0 cl(a

†a)l,
f (n)(a†a) =

∑∞
l=0 c

(n)
l a†lal, f (a)(a†a) =

∑∞
l=0 c

(a)
l ala†l. Baltin has shown

that [1]

c
(n)
l =

1
l!

∫ +∞

−∞
dλ g(λ)(e−iλ − 1)l =

l∑
k=0

(−)l−kf(k)
k!(l− k)! ,

c
(a)
l =

1
l!

∫ +∞

−∞
dλ eiλg(λ)(1− eiλ)l =

l∑
k=0

(−)kf(−k − 1)
k!(l − k)! , (31)

g(λ) .=
∫ +∞

−∞

dx

2π
f(x)eiλx .

From Eqs. (31) one can see that the normal ordered expansion is always well
defined, whereas the anti-normal ordering needs extending the domain of
f to negative integers. However, even though the anti-normal expansion is
defined, this does not mean that the expectation of f(a†a) can be obtained
through heterodyning, because the integral in Eq. (30) may not exist. Ac-
tually, this is the case when the anti-normal expansion is not consistent on
the Fock basis. In fact, for the exponential function f(a†a) = exp(−µa†a)
one has f (a)(|α|2) = eµ exp[(1 − eµ)|α|2]; on the Fock basis f (a)(a†a)|n〉
is a binomial expansion with finite convergence radius, and this gives the
consistency condition |1 − eµ| < 1. However, one can take the analytic
continuation corresponding for 1 − eµ < 1, which coincides with the con-
dition that the integral in Eq. (30) exists for any state �̂ (the Q-function
vanishes as exp(−|α|2) for α → ∞, at least for states with limited photon
number). This argument can be extended by Fourier transform to more
general functions f(a†a), leading to the conclusion that there are field op-
erators that cannot be heterodyne-measured, even though they have well
defined anti-normal expansion, but the expansion is not consistent on the
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Fock basis. As two examples, I consider the field operators ê+ and Ŵs in
Table 3. According to Eqs. (31) it follows that the operator ê+ does not
admit an anti-normal expansion, whence it cannot be heterodyne detected.
This is in agreement with the fact that according to Table 3 we can homo-
dyne ê+ only for η > 1/2, and heterodyning is equivalent to homodyning
with effective quantum efficiency η = 1/2 (which corresponds to the 3 dB
noise due to the joint measurement [21]). The case of the operator Ŵs is
different. It admits both normal-ordered and anti-normal-ordered forms:
Ŵs = 2

π(1−s) : exp
(
− 2

1−sa
†a
)

:= − 2
π(1+s) : exp

(
2

1+sa
†a
)

:A, where : . . . :
denotes normal ordering and : . . . :A anti-normal. However, the consistency
condition for anti-normal ordering is 2/(s + 1) < 1, with s ≤ 1, which im-
plies that one can heterodyne Ŵs for s > −1, again in agreement with the
value of s achievable by homodyne tomography at η = 1/2.

Now I briefly analyze the additional noise from homodyning field op-
erators, and compare them with the heterodyne noise. For a complex ran-
dom variable z = u + iv the noise is given by the eigenvalues N (±) =
|z|2 − |z|2±|z2− z2| of the covariance matrix. When homodyning the field,
the random variable is z ≡ 2eiϕx [22] and the average over-line denotes the
double integral over x and ϕ in Eq. (18). From Table (3) one has z = 〈a〉,
z2 = 〈a2〉, |z|2 = 2〈a†a〉+1, e2iϕ = 0 [23]. In this way one finds that the noise
from homodyning the field is N (±)

hom[a] = 1 + 2〈a†a〉 − |〈a〉|2 ± |〈a2〉 − 〈a〉2|.
On the other hand, when heterodyning, z becomes the heterodyne output
photocurrent, whence z = 〈a〉, z2 = 〈a2〉, |z|2 = 〈a†a〉 + 1, and one has
N

(±)
het [a] = 1 + 〈a†a〉− |〈a〉|2 ± |〈a2〉− 〈a〉2|, so that the tomographical noise

is larger than the heterodyne noise by a term equal to the average photon
number, i. e.

N
(±)
hom[a] = N

(±)
het [a] + 〈a†a〉 . (32)

Therefore, homodyning the field is always more noisy than heterodyning it.
On the other hand, for other field observables it may happen that homodyne
tomography is less noisy than heterodyne detection. For example, one can
easily evaluate the noise Nhom[n̂] when homodyning the photon number
n̂ = a†a. The random variable corresponding to the photon number is
ν(z) = 1

2 (|z|2 − 1) ≡ 2x2 − 1
2 , and from Table 3 we see that the noise

Nhom[n̂] .= ∆ν2(z) can be written as Nhom[n̂] = 〈∆n̂2〉 + 1
2〈n̂2 + n̂ + 1〉

[9]. When heterodyning the field, the random variable corresponding to the
photon number is ν(z) = |z|2 − 1, and from the relation |z|4 = 〈a†2a2〉 one



July 4, 2004 20:58 WSPC / Master file for review volume with part divider — 9in x 6in entire

496 Giacomo Mauro D’Ariano

obtains Nhet[n̂] .= ∆ν2(z) = 〈∆n̂2〉+ 〈n̂+ 1〉, namely

Nhom[n̂] = Nhet[n̂] +
1
2
〈n̂2 − n̂− 1〉 . (33)

We thus conclude that homodyning the photon number is less noisy than
heterodyning it for sufficiently low mean photon number 〈n̂〉 < 1

2 (1 +
√

5).

4. Homodyne Tomography in Presence of Additive
Phase-insensitive Noise

In this section I consider the case of additive Gaussian noise, in the typi-
cal situation in which the noise is phase-insensitive. This kind of noise is
described by a density matrix evolved by the master equation

∂t�̂(t) = 2
[
AL[a†] +BL[a]

]
�̂(t) , (34)

where L[ĉ] denotes the Lindblad super-operator L[ĉ]�̂ .= ĉ�̂ĉ† − 1
2 [ĉ†ĉ, �̂]+.

Due to the phase invariance L[ae−iϕ] = L[a] the dynamical evolution does
not depend on the phase, and the noise is phase insensitive. From the
evolution of the averaged field 〈a〉out ≡ Tr[a�̂(t)] = g〈a〉in ≡ Tr[a�̂(0)] with
g = exp[(A − B)t], we can see that for A > B Eq. (34) describes phase-
insensitive amplification with field-gain g, whereas for B > A it describes
phase-insensitive attenuation, with g < 1. Concretely, for A > B Eq. (34)
models unsaturated parametric amplification with thermal idler [average
photon number m̄ = B/(A − B)], or unsaturated laser action [A and B

proportional to atomic populations on the upper and lower lasing levels
respectively]. For B > A, on the other hand, the same equation describes a
field mode damped toward the thermal distribution [inverse photon lifetime
Γ = 2(B − A), equilibrium photon number m̄ = A/(B − A)], or a loss
g < 1 along an optical fiber or at a beam-splitter, or even due to frequency
conversion [6]. The borderline case A = B leaves the average field invariant,
but introduces noise that changes the average photon number as 〈a†a〉out =
〈a†a〉in + n̄, where n̄ = 2At. In this case the solution of Eq. (34) can be
cast into the simple form

�̂(t) =
∫
d2β

πn̄
exp
(
−|β|2/n̄

)
D̂(β)�̂(0)D̂†(β) . (35)

This is the Gaussian displacement noise studied in Refs. [13, 12] and com-
monly referred to as “thermal noise” [regarding the misuse of this termi-
nology, see Ref. [12]], which can be used to model many kinds of undesired
environmental effects, typically due to linear interactions with random clas-
sical fluctuating fields.
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Eq. (34) has the following simple Fokker-Planck differential representa-
tion [8] in terms of the generalized Wigner function Ws(α, ᾱ) for ordering
parameter s

∂tWs(α, ᾱ; t) =
[
Q(∂αα+ ∂ᾱᾱ) + 2Ds∂

2
α,ᾱ

]
Ws(α, ᾱ; t) , (36)

where Q = B − A and 2Ds = A + B + s(A − B). For nonunit quantum
efficiency η and after a noise-diffusion time t the homodyne probability
distribution pη(x;ϕ; t) can be evaluated as the marginal distribution of the
Wigner function for ordering parameter s = 1− η−1, namely

pη(x;ϕ; t) =
∫ +∞

−∞
dyW1−η−1

(
(x+ iy)eiϕ, (x− iy)e−iϕ; t

)
. (37)

The solution of Eq. (36) is the Gaussian convolution [8]

Ws(α, ᾱ; t) =
∫
d2β

πδ2s
exp
[
−|α− gβ|

2

δ2s

]
Ws(β, β̄; 0) ,

δ2s =
Ds

Q
(1− e−2Qt) , (38)

and using Eq. (37) one obtains the homodyne probability distribution

pη(x;ϕ; t) = eQt
∫ ∞

−∞

dx′√
2π∆2

1−η−1

exp

[
− (x′ − g−1x)2

2∆2
1−η−1

]
pη(x′;ϕ), (39)

where ∆2
η = 1

2g
−2δ21−η−1 . It is easy to see that the generating function of

the x̂ϕ-moments with the experimental probability pη(x;ϕ; t) can be written
in term of the probability distribution p(x;ϕ) for perfect homodyning as
follows∫ +∞

−∞
dx pη(x;ϕ; t)eikx =

exp
(
−1

2
g2∆2

ηk
2 − 1− η

8η
g2k2

) ∫ +∞

−∞
dx p(x;ϕ)eigkx. (40)

Eq. (40) has the same form of Eq. (8), but with the Fourier variable k
multiplied by g and with an overall effective quantum efficiency η∗ given by

η−1
∗ = η−1 + 4∆2

η = g−2η−1 +
2A

B −A (g−2 − 1) . (41)

On the other hand, following the same lines that lead us to Eq. (9), we
obtain the operator identity

�̂ ≡ �̂(0) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη∗(x;ϕ; t)Kη∗(g

−1x− x̂ϕ) , (42)



July 4, 2004 20:58 WSPC / Master file for review volume with part divider — 9in x 6in entire

498 Giacomo Mauro D’Ariano

which also means that when homodyning the operator Ô one should use
Rη∗(g−1x;ϕ) in place of Rη(x;ϕ), namely, more generally, one needs to
re-scale the homodyne outcomes by the gain and use the effective quantum
efficiency η∗ in Eq. (41). In terms of the gain g and of the input-output
photon numbers, the effective quantum efficiency reads

η−1
∗ = η−1 + g−2(2〈a†a〉out + η−1)− (2〈a†a〉in + η−1) . (43)

In the case of pure displacement Gaussian noise (A = B), Eq. (43) becomes

η−1
∗ = η−1 + 2n̄ , (44)

which means that the bound η∗ > 1/2 is surpassed already for n̄ ≥ 1: in
other worlds, it is just sufficient to have half photon of thermal noise to
completely spoil the tomographic reconstruction.
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