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We introduce a novel property of bipartite quantum states, which we call faithfulness, and we say
that a state is faithful when acting with a channel on one of the two quantum systems; the output state
carries complete information about the channel. The concept of faithfulness can also be extended to sets
of states, when the output states altogether carry a complete imprinting of the channel. Measures of

degrees of faithfulness are proposed.
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When a quantum system enters a quantum channel, its
state transforms according to a linear, trace-preserving,
and completely positive (CP) map £ [1]. The output cor-
responding to an input state p can be written in a so-
called Kraus form [2]

p— Ep) = Y K,pKl, M

where K, are operators on the Hilbert space H of the
quantum system, and satisfy the completeness relation
ZnK,;r K, = I, in order to preserve the trace of p.

It is natural now to pose the question: is it possible to
recover the channel £ from the output state E(p)?
Moreover, which sets of input states support a complete
imprinting of the channel £ on their respective outputs?
By using such inputs, and then performing quantum
tomography of their outputs, one will be able to recover
the full channel. Therefore, these states will be the key
element of any possible characterization or diagnostic
tool for quantum devices.

The easiest answer to the previous question is repre-
sented by the ‘“‘tomographically complete” set of input
states proposed for the quantum process tomography
[3.4]. A more efficient solution is provided by just a single
maximally entangled state [5,6], which supports a com-
plete imprinting of the channel, playing the role of all
possible input states in a quantum parallel fashion.
This also overcomes the practical infeasibility of a tomo-
graphically complete input set in quantum optics when
states with many photons are involved.

The aim of this Letter is to fill the gap between the two
above possibilities, characterizing any set of input
states—either bipartite or not—that can be used to ex-
tract all the information about a quantum channel. In
other words, we want to establish which sets of input
states have outputs in one-to-one correspondence with
the channel. This property of the set of states will be
named faithfulness. As we will see in the following, a
surprising result is that even a mixed separable state can
be faithful, or in other terms, that even a classically
correlated state can retain a perfect imprinting of a
quantum channel. Clearly, a single maximally entangled
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state will be much more efficient in recovering the chan-
nel than those mixed states —i.e., fewer measurements
will be needed — and for this reason a quantification of
faithfulness is in order.

In the following we will make an extensive use of the
notation [A) = > ,;A;;]i) ® |j) that sets a correspondence
between the vector |A) € H® H and the operator A &€
B(H), for a fixed orthonormal basis {|i) ® |j)}. With this
notation and the Kraus decomposition in Eq. (1), it is easy
to show [7] the following well-known mathematical re-
sult [8]: the operator S¢ on H ® H defined as

Se =€ I(II)I11) 2

is in one-to-one correspondence with the quantum chan-
nel &, the inverse relation being

E(p) = Tr,[(I ® p7)S¢], 3)

where 7 is the identity map, and p” denotes transposition
of the operator p with respect to the same basis used
before to introduce our notation.

This result was the key feature of the method presented
in [5]. In fact, by using a bipartite pure input state [A) =
A®I|I) = I®AT|I) and letting the channel act only on
the first subsystem, the output state is

& @ J(JANA]) = (1 ® AT)Sc(I ® A™), “

so that it is possible to recover Sg, whence &, from this
output, given that A is invertible. Therefore, |A) is faith-
ful iff A is full rank, i.e., iff |A) has maximal Schmidt
number.

Is it possible to keep the correspondence between out-
put state R and channel £ one to one by using a generic
bipartite input state R on H ® H, as described in Fig. 1?

Using the spectral decomposition R = Y ;|A;){A,| for
the input state R, we can write

Re=E®I(R) => (I8 A])Se (I ® A)
1

=E@ R(INI]) = I ® R(S), (5)

where R is the completely positive map whose action on
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FIG. 1. The input state R is called faithful when the corre-
spondence between the output state Re = E® I(R) and the
quantum channel £ is one to one, namely, the output state R
carries a complete imprinting of the quantum channel £.

an operator M on H is defined by

R (M) = > ATMA}, (6)
I
and A* denotes the complex conjugated of the operator A
with respect to the chosen basis. As illustrated in Fig. 2,
from Egs. (2) and (5) it follows that whenever the map R
is invertible the output state R will be in one-to-one
correspondence with S¢, and thus with the channel &, so
that the faithfulness of R is equivalent to the invertibility
of the map R.
The invertibility of the CP map R resorts to the
invertibility of a customary operator, by considering the
following equation involving vectors in H ® H:

;MA7>>= (ZA; ® A}>|M>>. (7)

In fact, the map R is invertible iff the relation | R (M)) <
|M) is invertible, and looking at the above equation 1t is
clear that this happens iff the operator R = SAT® A on
H ® H is invertible. In fact, in this case the action of the
inverse map R~! on an operator M can be defined
through the relation

|:R*1(M)>> = R7'|m), (8)

so that |R~I(R(M))) = R"'R|M) = |M). The operator
R can be calculated directly from R as

|R(M)) =

R = (ER)E = (R™E)", 9)

where E = Y ;]ij)jil is the swap operator, and O de-
notes the partial transposition of the operator O on the /th
Hilbert space. Notice that the correspondence R < R
preserves the multiplication of maps, as AB «— AB.
Briefly, we have found that R is faithful iff R is invertible.
In this case the relation R = £ ® I(R) — S is one to

: Re = |I)

R £
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FIG. 2. A generally mixed state R = > |A;){A,;| is faithful
when the map R(M) = Y ;,AJMA] is invertible, in order to
guarantee the one-to-one correspondence between R, and &.
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one, and the channel £ can be recovered from R, as
follows:

E(p) =

We now discuss the faithfulness of the bipartite state R
of two quantum systems described by different Hilbert
spaces H and K. We need now to consider vectors in either
He® K, H®2, or K®2, and in all cases we will keep our
notation |A) with the operator A in B(K, H), B(H), or
B(K), respectively, B(K, H) denoting the linear space of
bounded operators from K to H and B(H) = B(H, H) and
analogously B(K). Similarly to the previous reasoning
lines, corresponding to the input state R = > ;|A; M)Al
on H ® K we have now the map R(M) = > ,AJMA; from
B(H) to B(K). Then, faithfulness of R now is more gen-
erally equivalent to lef 1nvert1b111ty of the map R. The
operator R = DAT ®A now maps vectors in H®? to
vectors in K®2, and is st1ll such that R|MY) = |R(M)).
Therefore, faithfulness of R is equivalent to left inverti-
bility of the operator R.

We are now in a position to consider the most general
situation in which we have a set of bipartite states {R"™}Y
on H ® K. When do they support a complete imprinting of
the quantum channel that evolves them? The easiest
answer is to say that the set {R™}) on H ® K is faithful
iff the following state Ry, on H® K ® CV is faithful:

Tro[(1 ® p) I ® R™'(R¢)] (10)

Z PR @ |n)nl, (11)

where p, are nonvanishing probabilities. In fact, by mea-
suring the observable correspondlng to the basis {|n)} on
the space C" one has R" e ) as a reduced state on H ® K, and
the output state SV_ p,R™ ® |n)(n| contains the same

information of the set of outputs {R(”)}N . In this way the

evaluation of faithfulness of the set {R(”)}’l\' is reduced to
that of a single state R, according to our previous
approach.

Can we also use unfaithful states? An unfaithful state
R can still be useful in recovering only some quantum
channels or at least in reconstructing their action on some
particular states. In fact, when the map R is not invertible
one has R(M) = 0 for all vectors |M) € Ker(R), where
Ker(0) denotes the kernel of the operator O. Now, one
can use the Moore-Penrose pseudomverse R* [9], Wthh
allows inversion only in Ker:(R), with R¥fR =0, O
being the orthogonal projector on Kert(R). Correspond-
ingly, one defines the pseudoinverse map R¥ through the
identity |R¥(M)) = R¥|M). It is clear that pseudoinver-
sion, instead of the full S¢, will give its projection

Se=T®R*R:) =TI Q(Sy), (12)

where @ = R¥R = 972 is an orthogonal projection map
on B(H), also defined as |Q(M)) = Q|M). The partially
recovered map £(p) = Tr,[I ® p” S¢]is generally not CP,
and can also be written as £ = £Q* O being the map
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corresponding to the operator 0" Clearly &£ coincides
with & for any p such that 0*|p) = |p).

For any bipartite R one can define a number of faith-
fulness ¢ as @(R) = rank(R), i.e., as the dimension of
the space of states for which the reconstruction of the
action of &£ is possible. Clearly, a state is faithful for
©(R) = dim(H)?. Notice that for ¢(R) < dim(H)?> one
can have the situation in which Ker!(R) = Span{|M),
M commuting}, in which case the state R allows one to
reconstruct completely only “classical” channels, with
the input restricted to an Abelian algebra of states.

The introduction of pseudoinversion provides an alter-
native yet equivalent way for studying the faithfulness of
a set of states {R™}. Suppose they lead to the projection
maps {Q ™}, then the set will be faithful iff we can
recover any operator M € B(H) from its projections
Q(M), and this is possible iff, given a basis {B;} for
B(H), one has Span{Q " (B,)};, = B(H). In such circum-
stances, any element of the basis can be expressed as a
linear combination of the Q®(B,), ie., B;=
Sy jn)\?jQ(")(Bj), and therefore it is possible to recover
M =Y Ti{BIMIB; by <“patching” the projections
Q"(M) as

M= ZA;?;Tr[B} Q™W(M)]B,;. (13)
ijn
Analogously, by patching the partially recovered {5(5”)}
[see Eq. (12)] we get S¢ as

Se = > ATn[(1 @ BNS!] @ B.. (14)
ijn
Of course this patching procedure can also be used with
an unfaithful set of states to obtain a partial recovery of
the channel.

In summary, we have completely characterized any
faithful set of states and explained how to recover a
channel £ from its outputs. In the following we apply
our theoretical framework to some examples. As a gen-
eral rule, from the above consideration, it is clear that the
set of faithful states R is dense within the set of all
bipartite states. Therefore, there must be faithful states
among mixed separable ones. For example, the Werner’s
states for dimension d

1
R=——5——|d—f)I+(df — 1)E]
1= gzl NI+ @f = DE]

(15)
are separable for f = 0, however, they are faithful for
all f# 1, since one has (ER;)™ = [1/d(d* — 1)] X
[(d = HIIYI| + (df — 1)], and the singular values of
R, are [df —1/d(d*> — 1)] and L. Similarly, the “iso-
tropic” states

Ry = Iyl + ;;j](l - $|1>><<I |>, (16)

are faithful for f # # and separable for f = %,

the sin-
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gular values of R, being [d*f — 1/d(d*> — 1)] and £.
These examples show that classical correlations in mixed
bipartite states are sufficient to support the imprinting of
the quantum channel.

For infinite dimensions (e.g., for ‘“‘continuous vari-
ables™), one needs to restrict B(H) to the Hilbert space
of Hilbert-Schmidt operators on H, which leads to the
problem that the inverse map R ~! is unbounded. The re-
sult is that we will recover the channel £ from the mea-
sured Rg, however, with unbounded amplification of
statistical errors, depending on the chosen complete set
of operators B = {B;} in B(H) used for representing the
channel map. As an example, let us consider a twin beam
from parametric down-conversion of vacuum

Uy =TIy, W=(1—|»)2¢  |gl<1

7

for a fixed &, at, and a, with [a, a’] =1 denoting the
creation and annihilation operators of the harmonic os-
cillator describing the field mode corresponding to the
first Hilbert space in the tensor product (in the following
we will denote by bt and b the creation and annihilation
operators of the other field mode). The state is faithful,
but the operator ¥~! is unbounded, whence the inverse
map R ™! is also unbounded. In a photon number repre-
sentation B = {|n){(ml}, the effect will be an amplification
of errors for increasing numbers n, m of photons.

Consider now the quantum channel describing the
Gaussian displacement noise [10]

N ) = [ S exl—laP/MD(@pDH(@),  (18)

where D(a) = exp(aa' — a*a) denotes the usual dis-
placement operator on the phase space. The Gaussian
noise is in a sense the analogous of the depolarizing
channel for infinite dimension. The maps 2N, for varying
v satisfy the multiplication rule N, N, =N, ,,
whence the inverse map is formally given by N ;! =
N _,. Notice that, since the map N, is compact, the
inverse map N, ! is necessarily unbounded. As a faithful
state consider now the mixed state given by the twin
beam, with one beam spoiled by the Gaussian noise,
namely,

R=1T1& N, (W)VI. (19)
A lengthy straightforward calculation gives the state
R= %(«y ® I exp[—(a — b1)at — b)/v](WT o1), (20)
and its partial transposed
(vter),

21

— 1\(1/2)(@a—b)t(a—b)
R™ = (v + 1)*1(x1f®1)<” ) o

v+1

where transposition is defined with respect to the basis of
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eigenvectors of ata and b1h. Since our state is Gaussian,
the PPT criterion guarantees separability [11], and for
v > 1 our state (20) is separable (see also Ref. [12]), still
it is formally faithful, since the operator ¥ and the map
N, are both invertible. Notice that unboundedness of
the map inversion can even wash out completely the
information on the channel in some particular chosen
representation B = {B j}, e.g., when all operators B; are
out of the boundedness domain of R ~!. This is the case,
for example, of the (overcomplete) representation B =
{la){B]}, with |a) and | B) coherent states, since from the
identity

N llaxah) = - D@(, 4 ) D@, @)

v+1

one obtains

N laXal) = 1 D@1 = v Dl @), (23)
which has convergence radius v = % which is the well-
known bound for Gaussian noise for the quantum
tomographic reconstruction for coherent-state and Fock
representations [13]. Therefore, we say that the state is
formally faithful, however, we are constrained to repre-
sentations which are analytical for the inverse map R ~!.

Now, let us consider the problem of how to define a
measure of faithfulness F(R) of the state R. Even though
in principle any faithful state can be used to perform a
tomography of the channel &, the experimental errors on
the measured R, are propagated to £ by the inversion of
the map R. Thus different faithful input states can pro-
duce very different errors on the measured channel. It is
clear that all the features producing the amplification of
errors are contained in the singular values o of R, since
the inversion of this operator involves multiplications by
o, '. From one point of view, it is unpractical to have a
universal measure for faithfulness, since its actual defi-
nition will be dictated by the goodness criterion adopted
for the reconstruction of the quantum channel £. On the
other hand, one can give an overall performance indicator
for a given faithful state R, such as the quantity F(R) =

2,07 Since F(R)?> = |IRI[3 = Tt[RTR] = T{RTR], such
measure of faithfulness coincides with the purity of the
state R, and this shows that the maximally faithful states
are pure states with maximal Schmidt number. The defi-
nitions of F and ¢ can be naturally extended to sets of
states {R"™} via the introduction of the joint state Ry, in
Eq. (11), the probabilities representing the frequency in
using each input.

In conclusion, in this Letter we have introduced a new
feature of bipartite quantum states, which we call faith-
fulness, corresponding to the ability of the state of carry-
ing the complete imprinting of a channel acting on one of
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the pairs of quantum systems. This property has also been
extended to sets of bipartite states, when the channel can
be recovered from the corresponding output states
patched together. We have seen that there are separable
states that are faithful, and the maximally faithful states
are the maximally entangled pure states. We want to stress
that the property of being faithful is a strictly quantum
feature, since a faithful state cannot be written as the
mixture of local classical (i.e., commuting) states. This
also shows how subtle is the game between the classical
and quantum natures in the correlations of a general
mixed quantum state.

After the submission of the present Letter, a related
experimental paper appeared in Ref. [14].
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