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We define and study a fidelity criterion for quantum channels, which we term the
minimax fidelity, through a noncommutative generalization of maximal Hellinger
distance between two positive kernels in classical probability theory. Like other
known fidelities for quantum channels, the minimax fidelity is well defined for
channels between finite-dimensional algebras, but it also applies to a certain class
of channels between infinite-dimensional algebrassexplicitly, those channels that
possess an operator-valued Radon-Nikodym density with respect to the trace in the
sense of Belavkin-Staszewskid and induces a metric on the set of quantum channels
that is topologically equivalent to the CB-norm distance between channels, pre-
cisely in the same way as the Bures metric on the density operators associated with
statistical states of quantum-mechanical systems, derived from the well-known fi-
delity s“generalized transition probability”d of Uhlmann, is topologically equivalent
to the trace-norm distance. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1904510g

I. INTRODUCTION

Many problems in quantum information science,1,2 both in theory and in experiment, involve
finding a set of quantum-mechanical states or channels that solve some sort of an optimization
problem, typically formulated in terms of a numerical criterion that measures how close a given
pair of states or operations are to each other.sMany such criteria have been proposed to date, each
defined with specific theoretical or experimental considerations in mind; see Ref. 3 for a recent
comprehensive survey.d

Let us first consider the case of quantum states, i.e., density operators. Leth be a complex
separable Hilbert space associated to a quantum-mechanical system. Given a pair of density
operatorsr ,s, i.e., positive trace-class operators with unit trace, one can use either thefidelity4–7

Fsr,sd ª Trfsr1/2sr1/2d1/2g s1d

or the trace-norm (half-) distance
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Dsr,sd ª 1
2ir − siT, s2d

whereiriTªTruru anduruªsr†rd1/2.8,9 Loosely speaking, two statesr ands are close to each other
if Fsr ,sd is large, or ifDsr ,sd is small. In fact, as follows from the key inequality5,10

1 − Fsr,sd ø Dsr,sd ø Î1 − F2sr,sd, s3d

the fidelity and the trace-norm distance are equivalent in the sense that any two density operators
that are close to one another in the sense ofs1d are also close in the sense ofs2d, and vice versa.

As for quantum channels, i.e., normal completely positive unital mappings from an operator
algebraB=Bshd into another algebraA=Bsgd, whereg and h are complex separable Hilbert
spaces, things get somewhat complicated. Consider, for instance, the case wheng is finite-
dimensional, and letmªdim g. Fix an orthonormal basishu jlj j=1

m of g, and let uclªm−1/2o j=1
m u jl

^ u jl be the normalized maximally entangled vector in the product spaceg ^ g. Given two quan-
tum channelsF ,C :B→A, one can measure their closeness in terms of the fidelity of the states on
B ^ A, obtained from the maximally entangled statep= uclkcu by applying the predual channels
FT andCT scf. Sec. II for precise definitionsd to the first factor in the tensor product:

FT ^ idspd =
1

m
o
i=1

m

o
k=1

m

FTsuilkkud ^ uilkku ; r,

CT ^ idspd =
1

m
o
i=1

m

o
k=1

m

CTsuilkkud ^ uilkku ; s.

The fidelity Fsr ,sd, taken as thechannel fidelity

FsF,Cd ª FsFT ^ idspd, CT ^ idspdd, s4d

by Raginsky in Ref. 11, enjoys many properties parallel to those of the fidelitys1d for quantum
states. Alternatively, one can adopt theshalf-d distance1,12,13

DsF,Cd ª 1
2iF − CiCB, s5d

wherei ·iCB denotes the so-callednorm of complete boundednesssor CB-norm for short; cf. Sec.
II C for detailsd. We note that the CB-norm half-distances5d can be given in terms of the trace-
norm distances2d between density operators by means of the variational expression1,12,13

DsF,Cd = sup
p

DsFT ^ idspd, CT ^ idspdd, s6d

where the supremum is taken over all density operatorsp on the tensor product spaceg ^ g. By
analogy with density operators of the states, we are tempted to say that two quantum channels,F
and C, are close either ifFsF ,Cd is large or ifDsF ,Cd is small. However, in addition to the
finite-dimension restriction dimg,` fthe only case under which the definitions4d of the channel
fidelity makes senseg, we encounter the following difficulty. It turns out11 that, as a criterion of
closeness, the CB-norm distances5d is strictly stronger than the fidelity measures4d in the sense
that even whenDsF ,Cd is large,FsF ,Cd may be quite large as well, and may even become
equal to one in the limit dimg→`. Consider, for instance, the caseC=id. Then one can show11

that

1 −DsF, idd ø FsF, idd ø Î1 − s1/4dD2sF, idd, s7d

and we immediately see that whenF is such thatDsF , idd attains its maximum value of unity, the
fidelity FsF , idd is still bounded between 0 andÎ3/2. To make matters worse, the only bound on
s5d in terms ofs4d known so far is
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1 ù DsF,Cd ù 1 −FsF,Cd, s8d

as follows readily from Eqs.s3d and s6d. Furthermore, one can easily find sequenceshFmj, hCmj
of channelsFm,Cm:BsCmd→BsCmd, such thatDsFm,CmdÞ0 for all m, while

lim
m→`

FsFm,Cmd = 1.

Indeed, consider the unitarily implemented channels

FmsBd = Um
† BUm, CsBd = Vm

† BVm

with the unitariesUm,Vm chosen in such a way thatUmÞVm but

lim
m→`

1

m
TrsUm

† Vmd = 1.

Thus, the channel fidelitys4d, apart from being applicable only in finite-dimensional settings, has
the distinct disadvantage of not being equivalent to the CB-norm distance, in contrast to the case
of the Uhlmann fidelitys1d and the trace-norm distances2d on the state space of a quantum-
mechanical system.

The goal of this paper is to define and study a new fidelity criterion for quantum channels,
which we term theminimax fidelityand which is a noncommutative generalization of maximal
Hellinger distance between two positive kernels in classical probability theory. Unlike the channel
fidelity s4d of Ref. 11, the minimax fidelity is not only well defined for channels between finite-
dimensional algebras, but also applies to a certain class of channels between infinite-dimensional
algebrassexplicitly, those channels that possess an operator-valued Radon-Nikodym density with
respect to the trace in the sense of Belavkin-Staszewski14d and is equivalent to the CB-norm
distance, echoing the way the Uhlmann fidelitys1d for density operators is equivalent to the
trace-norm distances2d.

Apart from these technical features, the minimax fidelityfsF ,Cd between two quantum
channelsF ,C has a directoperationalmeaning: intuitively, it is defined as the minimum overlap
of output statessdensity operatorsd of the predual channelsFT ,CT, when the operator-sum
decompositions2 of the latter are chosen to be maximally overlapping; this is spelled out in precise
terms in Sec. IV E. Our central resultsTheorem 1d demonstrates that the minimax fidelity is
independent of the order of these two optimizations. Furthermore, the equivalence of our minimax
fidelity to the CB-norm distance, which is stated precisely in Sec. V in terms ofdimension-free
bounds, is a promising avenue for the study and characterization of dimension-free boundsswhen-
ever they existd on other operationally meaningful distance measures for quantum operations3 in
terms of the CB-norm distance. As pointed out in Ref. 15, such bounds are crucial for a successful
generalization of the usual quantum capacity of a channel1,2 si.e., with respect to the identity
channeld to the case of comparing quantum channels to an arbitrary reference channel. We plan to
pursue these matters further in a future publication.

The paper is organized as follows. In Sec. II we fix the definitions and notation used through-
out the paper. The minimax fidelity is then introduced in Sec. III. Section IV is devoted to the
evaluation of the minimax fidelities in the various mathematical settings that arise in quantum
information theory. Next, in Sec. V, we list key properties of the minimax fidelity. Finally, in Sec.
VI we sketch some example applications of the minimax fidelity to several problems of quantum
information theory.

II. PRELIMINARIES, DEFINITIONS, NOTATION

A. Pairings, states, operations

Let h be a complex separable Hilbert space; letB denote the Banach algebraBshd of all
bounded linear operators onh with the usual operator normi ·i; and letBT denote the Banach
spaceBTshd of trace-class operators onh with the trace normi ·iT. The set of normal states onB,
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i.e., ultraweakly continuous positive unital linear functionals onB, will be denoted bySsBd or,
whenever we need to exhibit the underlying Hilbert space explicitly, bySshd. Generic elements of
SsBd will be denoted by the stylized Greek lettersÃ ,% ,§. Note that the operator norm onB can
be written asiBi=suph%suBud :%PSsBdj.

We equiph sand shall equip all Hilbert spaces introduced in the sequeld with an isometric
involution J=J†, J2=1h, having the properties of complex conjugation,

Jo
j

l jh j = o
j

l jJh j, ∀ l j P C, h j P h.

We can thus define thetransposeof anyBPB asB̃ªJB†J, as well as introduce the trace pairing16

sB,rd ª TrsBr̃d = TrsB̃rd, ∀ B P B, r P BT s9d

of B andBT. Under this pairing, which differs from the usual one in thatBPB is paired with the
transpose ofrPBT rather than directly withr, normal linear functionals onB are in a one-to-one
correspondence with the elements ofBT. Thus to each normal state% we associate a unique
positive trace-class operator with unit trace, denoted by the standard Greek letterr and referred to
as thedensity operatorcorresponding to%, via %sBd=sB,rd for all BPB. Similarly, density
operators corresponding to states denoted byÃ and§ will be denoted byp ands, respectively.

Apart from natural arguments from standard representation theory of operator algebras, one
reason why we chose to pairB with the transposed operatorr̃=Jr†J, rather than withr, is to be
able to keep all notations conveniently parallel to the classicalscommutatived case, as will be
amply demonstrated throughout the paper. Note also that we can fix a complete orthonormal basis
hu jlj of h and express the pairings9d in terms of the matrix elements ofB andr as

sB,rd = o
j ,k

k j uBukl · k j urukl ; o
j ,k

Bjkr jk,

where we have used the covariant indices for the matrix elements of bounded operators inB and
the contravariant indices for the matrix elements of trace-class operators inBT, when the latter are
identified via the pairings9d with normal linear functionals onB. Yet another reason to opt for the
pairing of B with the transposed operatorr̃, further elaborated upon in Sec. II B, is that then the
density operatorr of a normal state% will coincide with the operational density of%, understood
as a quantum operation fromB into the Abelian algebraC.

Introducing another Hilbert spaceg, the algebraAªBsgd, and the trace classATªBTsgd, let
us considerquantum operations, i.e., the completely positive normal linear mappingsF :B→A
such thatFs1hdø1g; if Fs1hd=1g, then F is referred to as aquantum channel. Any quantum
operationF possesses a uniquepredualFT :AT→BT, defined as the transpose ofF with respect
to the trace pairings9d, i.e.,

sFsBd,rd = sB,FTsrdd, ∀ B P B, r P AT. s10d

Conversely, given a normal completely positive linear mapF :AT→BT such that TrhFsrd
øTrgr for all rPAT, we define itsdual with respect to the trace pairings9d as the unique
mappingFT :B→A for which

sB,Fsrdd = sFTsBd, rd, ∀ B P B,r P AT. s11d

Using these definitions, one readily obtains thatFT
T=F for any normal completely positive map

F :B→A. Alternatively, one may define the predual of a normal completely positive mapF :B
→A as the unique normal completely positive mapFT :AT→BT such thatFT

T=F.
If F is given in the Kraus form17 FsBd=SFj

†BFj, or more generally as an integral
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FsBd =E
Z

Fszd†BFszddmszd, s12d

with respect to a positive measurem on a measurable spacesZ,BZd, where the integration is
understood in the sense of Bochner,18 then the predual mapFT has the transposed integral form

FTsrd =E
Z

FTszd†rFTszddmszd,

where g{j° kjuFTszd are Hilbert-transposed to the operatorsh{h° khuFszd, that is FTszd
=Fszd̃ for all zPZ.

Any normal state%PSsBd is automatically a quantum channel fromB into the Abelian
algebraC, and it is readily seen that the density operatorr of %, understood as acting onlPC on
the right,C{l°lr, is precisely the predual%T :C→BT. Indeed, givenBPB andlPC, we have

s%sBd,ld = sB,lrd = sB,%Tsldd,

which proves our claim thatr=%T. Thus we also have that%=%T
T=rT.

B. Operational densities

In order to avoid technicalities involving unbounded operators, we shall henceforth assume
that all quantum operations we deal with arecompletely majorizedby the trace, considered as the
maptssd=1gTr s of BT into A=Bsgd, in the sense14 that there exists a constantl.0 such that the
differencelt−F is a completely positive mapBT→A. For example, this condition is satisfied by
all quantum operations between finite-dimensional algebras.19 As was proven in Ref. 14, in this
case there exists a unique positive operatorFt on the Hilbert spaceHªg ^ h, called thedensity
of F with respect to the tracet, such that

FsBd = Trhfs1g ^ B̃dFtg, s13d

where Trh Y, YPBsHd, denotes the partial trace ofY with respect toh,

sTrhY,rd = sY,r ^ 1hd, ∀ r P BTsgd.

Moreover,Ft as a linear operator onH is bounded and majorized byl :0øFtøl1H, and the
operation is unital,Fs1hd=1g fcontractive,Fs1hdø1gg if and only if Trh Ft=1g sTrh Ftø1gd. This
is equivalent to saying that the predual mapFT :AT→BT, which, using Eqs.s10d ands13d, can be
written as

FTsrd = TrgfFtsr̃ ^ 1hdg, s14d

is trace preservingstrace decreasingd.
As an example, consider a normal state% on B, which, being a quantum channel intoC,

satisfies the complete majorization condition withl=iri, wherer is the density operator of%.
Furthermore, it is easy to see that%t=r. Indeed, we can write

%sBd = sB,rd = TrsBr̃d = TrsB̃rd = Trhfs1C ^ B̃drg,

and the desired result follows upon comparing this with Eq.s13d. This provides additional justi-
fication for our definition of the trace pairing in Eq.s9d, since we then have that%T=r=%t for any
normal state%.

If the operationF :B→A is given in the generalized Kraus forms12d, we can write down its
operational densityFt explicitly. To this end, suppose that all operatorsFszd are determined by
generalized bra-vectorsGszd=sFszdu, densely defined as the linear functionals
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Gszduj ^ hl = kjuFszduhl ; sFszduuj ^ hld

on the linear span of the ket-vectorsuj ^ hl;j ^ h̃ in H=g ^ h, wherejPg is also treated as a

bra-vector such thatJj=kju and ujl= j̃. Then the operational densityFt of F is given by the
corresponding decomposition

Ft =E Gszd†Gszddmszd ; G†G, s15d

where the integral is, again, understood in the sense of Bochner.

C. Completely bounded maps

Completely positive linear maps between operator algebras are a special case ofcompletely
boundedmaps.20 Consider, as before, the algebrasB=Bshd andA=Bsgd. For eachnPN define
the nth matrix level MnsBd.B ^ Mn, whereMn denotes the algebra ofn3n matrices with
complex entries. That is,MnsBd is the space ofn3n matrices withB-valued entries,

MnsBd ª hfBijg:Bij P B,1 ø i, j ø nj.

Analogous construction can also be applied toA to yield the matrix levelsMnsAd. Each matrix
level MnsBd inherits a *-algebra structure fromB through

fBijgfCijg ª Fo
k=1

n

BikCkjG, fBijg†
ª fBij

†g.

In fact, by identifyingMnsBd via a natural *-isomorphism with the algebraBshsndd of bounded
linear operators onhsnd, the direct sum ofn copies ofh, one can makeMnsBd into a C*-algebra.
Thus, each matrix level ofB possesses a unique C*-norm.

Now, for anynPN a linear mapL :B→A induces the mapLsnd
ªL ^ idn from MnsBd into

MnsAd, defined byLsnd : fBijg° fLsBijdg. Let us define thenorm of complete boundednesssor
CB-normd by iLiCBªsuphiLsndi :nPNj, where

iLsndi ª sup
BPMnsBd,iBiø1

iLsndsBdi

is the usual operator norm ofLsnd. A linear map L :B→A is called completely boundedif
iLiCB,`. Every completely positive mapF :B→A is automatically completely bounded, with
iFiCB=iFs1hdi. For a general completely bounded mapL, one has, by definition,iLs1hdiø iLi
ø iLiCB.

Passing to the predual mapLT :AT→BT, we can similarly define induced maps
LT

snd :MnsATd→MnsBTd, nPN, and the predual CB-norm

iLiCB
T

ª sup
nPN

iLsndiT,

where

iLsndiT ª = sup
rPMnsATd:iriTø1

iLsndsrdiT.

It is easy to see thatiLsndi=iLT
sndiT for all nPN, so thatiLiCB=iLTiCB

T . It is also straightforward
to see that the “unstabilized” normsi ·i and i ·iT are tensor supermultiplicativesi.e., iL1 ^ L2i
ù iL1i iL2id, whereas the corresponding CB-norms are tensor multiplicativesi.e., iL1 ^ L2iCB

=iL1iCBiL2iCBd.
There is also a useful nonvariational formula for the CB-norm of a mapL :B→A. Namely, let

,2 denote the Hilbert space of square-summable infinite sequences of complex numbers, and let
Ks,2d denote the space of compact operators on,2. Then iLiCB=iL ^ idKs,2di. Since we have
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assumed thatB=Bshd with h a complex separable Hilbert space, and since all complex separable
Hilbert spaces are canonically isomorphic to,2, we may also writeiLiCB=iL ^ idKshdi.

D. Miscellany

Any positive operatorBPBshd has a unique positive square root, denoted byB1/2 and defined
as the positive operatorXPBshd such thatB=X2. This definition can be extended to any operator
A that is similar to a positive operatorDPBshd, in the sense that there exists an operatorS
PBshd such thatA=SDS+, whereS+ is the pseudoinverse ofS, equal toS−1 on ranS and to 0 on
ker S. In that case, we maydefineÎAªSD1/2S+. From now on, in order to distinguish this
extended definition of the square root from the usual one, we shall always use the square root
symbolÎ· for this extended definition, and reserve the exponent notation·1/2 for the usual defini-
tion.

Consider now two positive operatorsA,BPBshd. It is easy to see that their productAB
is similar toA1/2BA1/2 with S=A1/2. Note that the operatorAB is positive when restricted to the
closure of ran A, when the latter is equipped with the weighted inner product
ky uxlAª kA−1/2y uA−1/2xl:

kyuABylA = kA−1/2yuA−1/2AByl = kyuByl ù 0, ∀ y P ranA.

Thus we may defineÎABªSsA1/2BA1/2dS+ with S=A1/2.
This notation, again, allows for a convenient parallelism between the classicalscommutatived

formalism and the quantumsnoncommutatived one. Indeed, consider two mutually commuting
positive trace-class operatorsr, s, let huxlj denote the set of their common eigenvectors, and let
rx;kxuruxl, sx;kxusuxl denote the corresponding eigenvalues. ThenÎrs is also trace-class, and

TrÎrs = o
x

Îrxsx.

If Tr r=1=Tr s, thenPª hrxj andQª hsxj are probability distributions, and TrÎrs then gives
the classical fidelitysalso known as theBhattacharyya coefficientd10 FsP,Qd betweenP andQ.

Our main technical tool in this paper is given by the following:
Lemma 1: LetH be a complex separable Hilbert space, and let R, SPBsHd be positive

operators such that R1/2SR1/2 is trace class. Then the supremum

sup
X,YPBsHd

hTrsX†Y + Y†Xd:X†X = R,Y†Y = Sj = 2 TrÎRS s16d

is achieved on any XPBsHd satisfying the condition X†X=R, say X=R1/2, and Y=Yo satisfying
the equation

YoX
† = sXSX†d1/2 = XYo

†. s17d

Proof: To prove the lemma one can use either the polar decomposition or the method of
Lagrange multipliers. We shall use the latter. Fixing anX satisfyingX†X=R, we can write the
Lagrange function as

L = TrsX†Y + Y†X − Y†YLd,

whereL=L†PBsHd is the operator-valued Lagrange multiplier corresponding to the hermiticity
conditionS=Y†Y=S†. At the stationary point

dL = TrsX† − LY†ddY + sX − YLddY† = 0,

so Y=Yo must satisfy the equationYL=X sthe other equation,LY†=X†, corresponding toY†=Yo
†,

is obtained by taking the Hermitian adjointd. ThusYo=XL−1, whereL−1 should be determined from
L−1X†XL−1=S. Multiplying this on the left byX and on the right byX† yields sXL−1X†d2=XSX†, or
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XL−1X†=sXSX†d1/2. Thus, we indeed have thatYoX
†=sXSX†d1/2=XYo

†, and therefore that

TrsYoX
† + XYo

†d = 2 TrssXSX†d1/2d. s18d

This extremal value is precisely the maximal value due to convexity of the function being maxi-
mized in Eq.s16d. Note that, sincesU†XSX†Ud1/2=U†sXSX†d1/2U for any unitaryU, the value of
the supremum in Eq.s16d, which coincides with Eq.s18d, does not depend on the choice ofX
satisfyingX†X=R. Indeed, by virtue of the polar decompositionX=UR1/2,

2 TrsXSX†d1/2 = 2 TrsU†sXSX†d1/2Ud = 2 TrssR1/2SR1/2d1/2d.

Rewriting this trace in the equivalent form 2 TrsX†Yod with

X†Yo = R1/2sR1/2SR1/2d1/2R−1/2 ; ÎRS

corresponding toX=R1/2, we obtain the extremal value in Eq.s16d. h

We shall also need the following simple, but useful, result:
Lemma 2: Let S be a compact subset of a complex Banach space V, such that xPS implies

lxPS for all lPC with ulu=1. Let f:V→C be a continuous function which is homogeneous of
order 1, i.e., fslxd=lfsxd for all lPC and all xPV. Then

sup
xPS

ufsxdu = sup
xPS

Re fsxd. s19d

Proof: Let x* PS be such thatufsx*du=supxPSufsxdu, with fsx*d= ufsx*duei arg fsx* d. Let x**

ªe−i arg fsx* dx* . By the homogeneity off,

fsx** d = e−i arg fsx* dfsx*d = ufsx*du.

But thenufsx** du= fsx** d=Re fsx** d. Since Relø ulu for all lPC, the lemma is proved. h

III. OPERATIONAL FIDELITIES AND DISTANCES

A. Classical kernel fidelity

The fidelity distinguishing different quantum operations without the restriction on the Hilbert
space dimensionality was suggested by Belavkin in Ref. 21 on the basis of a noncommutative
generalization of the maximal Hellinger distance between two positive kernels. Namely, given a
locally compact spaceX and a measure spacesY,BY,md, wherem is a positive measure, let us
denote byA the algebraCsXd of bounded continuous functions onX, and byBT;CTsYd the space
of absolutelym-integrable complex functions onY. A positive kernelP is then given in terms of
a function ps·u ·d :Y3X→R+, such thatPxªps·uxdPBT for all xPX, while PªeYpsy u ·ddmsyd
PA. Given two positive kernelsP andQ, the squared pointwise Hellinger distance

dH
2 sPx,Qxd ª

1

2
E sÎpsyuxd − Îqsyuxdd2dmsyd =E F1

2
spsyuxd + qsyuxdd − ÎpsyuxdqsyuxdGdmsyd

s20d

is well defined and finite for eachxPX, so that we can define

dH
2 sP,Qd ª

1

2
sup
xPX

E sÎpsyuxd − Îqsyuxdd2dmsyd ; idH
2 sPx,Qxdi, s21d

the last expression indicating the fact thatdH
2 sP,Qd is given by the supremum of the squared

pointwise Hellinger distances20d over allxPX. Note that the squared Hellinger distancedH
2 sP,Qd

between two positive distributionsP=ps·d andQ=qs·d is the minimal mean quadratic distance
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dH
2 sP,Qd =

1

2
inf

x,cPCsYd
HE uxsyd − csydu2dmsyd:uxs·du2 = ps·d,ucs·du2 = qs·dJ

= s1,1
2sP + Qdd − sup

c:ucs·du2=qs·d
E Îpsyd Recsyddmsyd, s22d

wheresf ,Pd=efsydpsyddmsyd denotes the integral pairing off PCsYd with PPCTsYd. Therelative
fidelity

fsP,Qd =
1

Îs1,Pds1,Qd
sup

c:ucs·du2=qs·d
E Îpsyd Recsyddmsyd =

s1,ÎPQd
Îs1,Pds1,Qd

s23d

of the distributionsP andQ is obviously related to the distances22d by

dH
2 sP,Qd + Îs1,Pds1,QdfsP,Qd = s1,1

2sP + Qdd . s24d

If Pxªps·uxd and Qxªqs·uxd are conditional distributions with constant integralss1,Pxd and
s1,Qxd, e.g., normalized to unity, this relation also remains valid for the minimal fidelity

fsP,Qd = inf
xPX

fsPx,Qxd,

which can alternatively be defined by the minimax formula

fsP,Qd = inf
xPX

sup
c:ucs·uxdu2=Qxs·d

s1,ÎPx Recs·uxdd
Îs1,Pxds1,Qxd

, s25d

where the supremum is achieved oncs·uxd;c+s·uxd satisfyingcsy uxd=Îqsy uxd. In particular, ifP
andQ are probability kernels,s1,Pxd=1=s1,Qxd for all xPX, then

dH
2 sP,Qd = 1 − inf

xPX
E Îpsyuxdqsyuxddmsyd ; 1 − fsP,Qd,

where

fsP,Qd = inf
xPX

E Îpsyuxdqsyuxddmsyd ; inf
xPX

s1,ÎPxQxd s26d

is the minimax fidelity of the classical channels described by these kernels.

B. Quantum operational fidelity

Generalizing Eq.s21d, one can define the squared Hellinger distance between quantum opera-
tions F andC with the respective operational densitiesFt ,CtPBsHd, H=g ^ h, as

dH
2 sF,Cd = 1

2 inf
G,YPBsHd

hiTrhsG − Yd†sG − Ydi:G†G = Ft,Y
†Y = Ctj. s27d

The operatorsG ,YPBsHd, such thatG†G=Ft and Y†Y=Ct, are naturally thought of as the
purificationsof Ft andCt, respectively. This means that we can fix an orthonormal basishu jlj of
H, say the product basisu jl= uil ^ ukl;ui ,kl, where huilj and huklj are some fixed orthonormal
bases ofg andh, respectively, and represent any suchG andY as strongly convergent sums

G = o
j

u jlk j uG ; o
j

u jlsFju, Y = o
j

u jlk j uY ; o
j

u jlsVju, s28d

where the generalized bra-vectorssFju define the bounded operatorsFj ,Vj :g→h through
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kkuFjuil = sFjusuil ^ ukld = k j iGui,kl, kkuVjuil = sVjusuil ^ ukld = k j iYui,kl.

As seen directly from this definition, the mappingsFu°F is linear: saF+bGu°aF+bG. Using
Eq. s28d, we may write

Ft = o
j

uFjdsFju ; G†G, Ct = o
j

uVjdsVju ; Y†Y, s29d

where the sums converge in the strong operator topology. This determines the Kraus
decompositions17 FsBd=o jFj

†BFj, CsBd=o jVj
†BVj of the mapsF ,C :B→A. Analogously, upon

defining the mappingsF ,V:g→h ^ H by

Fy ª o
j

Fjy ^ u jl, Vy ª o
j

Vjy ^ u jl,

we can write the mapsF ,C in the Stinespring form22 as FsBd=F†sB^ 1HdF and CsBd=V†sB
^ 1HdV.

Taking into account the fact thatiA†Ai=sup%PSsgd%sA†Ad and defining the positive function

cs·; · d:BsHd 3 BTsgd → R,

csA;rd ª 1
2TrsAsr ^ 1hdA†d,

we can rewrite the fidelity distances27d in the following minimax form:

dH
2 sF,Cd = inf

G,YPBsHdh sup
%PSsgd

csG − Y;rd:G†G = Ft,Y
†Y = Ctj . s30d

On the other hand, generalizing Eq.s20d to quantum operations, we can define the squared
pointwise distance

dH
2 sF,Cds%d ª inf

G,YPBsHd
hcsG − Y;rd:G†G = Ft,Y

†Y = Ctj s31d

betweenF and C on the setSsgd of all normal states onA=Bsgd. Just as with the probability
kernels in the commutative setting described in the preceding section,dH

2 sF ,Cd coincides with the
supremum ofdH

2 sF ,Cds%d over all normal states%PSsgd wheneverF andC are sproportional
tod quantum channels:

Theorem 1: Let F ,C :B→A be quantum operations with the respective operational densities
Ft ,CtPBsHd. Suppose that for all%PSsgd the pairings

sFt,r ^ 1hd ; %fFs1hdg, sCt,r ^ 1hd ; %fCs1hdg s32d

are constant. Then

dH
2 sF,Cd = sup

%PSsgd
dH

2 sF,Cds%d. s33d

Furthermore, then we have that

dH
2 sF,Cd + ÎiFi iCifsF,Cd = 1

2siFi + iCid, s34d

where

fsF,Cd = inf
%PSsgd

sup
YPBsHd:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg

Î%fFs1hdgÎ%fCs1hdg
s35d

is theminimax fidelity betweenF and C.
Proof: Fix an arbitrary%PSsgd. From Eq.s32d it follows that
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iFi = sup
%PSsgd

%fFs1hdg = %fFs1hdg,

and the same goes forC. Therefore, given any pairG ,YPBsHd such thatG†G=Ft and Y†Y
=Ct, we can write

csG − Y;rd = 1
2TrssG − Yd†sG − Ydsr ^ 1hdd = 1

2TrssFt + Ctdsr ^ 1hd − sG†Y + GY†dsr ^ 1hdd

= 1
2siFi + iCi − TrfsG†Y + GY†dsr ^ 1hdgd,

whence it follows that

dH
2 sF,Cds%d = inf

G:G†G=Ft

Y:Y†Y=Ct

csG − Y;rd = 1
2SiFi + iCi − sup

G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdgD .

Taking the supremum of both sides over all%PSsgd, we obtain

sup
%PSsgd

dH
2 sF,Cds%d = 1

2SiFi + iCi − inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdgD . s36d

On the other hand,

dH
2 sF,Cd = inf

G:G†G=Ft

Y:Y†Y=Ct

sup
%PSsgd

csG − Y;rd = 1
2 inf

G:G†G=Ft

Y:Y†Y=Ct

sup
%PSsgd

siFi + iCi − TrfsG†Y + GY†dsr ^ 1hdgd,

which yields

dH
2 sF,Cd = 1

2SiFi + iCi − sup
G:G†G=Ft

Y:Y†Y=Ct

inf
%PSsgd

TrfsG†Y + GY†dsr ^ 1hdgD . s37d

Note that the right-hand sides of Eqs.s36d ands37d differ only in the order of the extrema. Thus,
establishing the validity of Eq.s33d amounts to justifying the interchange of the extrema.

According to Lemma 1, the supremum overG andY in Eq. s36d can be evaluated by fixing
G=Ft

1/2 first and then varying only over allYPBsHd such thatY†Y=Ct. By the polar decom-
position, any suchY has the formUCt

1/2 for some partial isometryU. Thus we have

sup
G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdg = 2 sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg

= 2 sup
U

Re TrfFt
1/2UCt

1/2sr ^ 1hdg, s38d

where the supremum in Eq.s38d is taken over all partial isometriesU such that

Ct
1/2U†UCt

1/2 = Ct.

Since the expression being minimized is linear inU and the isometries are the extreme points of
the unit ball B1sHdª hXPBsHd : iXiø1j of all bounded operators,23 we may instead take the
supremum over the entire unit ball:

sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg = sup

XPB1sHd
Re TrfFt

1/2XCt
1/2sr ^ 1hdg. s39d

Since the expression being maximized in the right-hand side of Eq.s39d is affine in bothX andr,
and sinceB1sHd andSsgd are closed convex subsets ofBsHd andBTsgd, respectively, it follows
from standard minimax arguments24 that we can indeed interchange the extrema to obtain
f−sF ,Cd= f+sF ,Cd, where
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f−sF,Cd ª inf
%PSsgd

sup
XPB1sHd

Re TrfFt
1/2XCt

1/2sr ^ 1hdg

f+sF,Cd ª sup
XPB1sHd

inf
%PSsgd

Re TrfFt
1/2XCt

1/2sr ^ 1hdg,

which proves the claim of Eq.s33d. The rest is straightforward. h

As seen immediately from Theorem 1, whenF andC are quantum channels, then

dH
2 sF,Cd + fsF,Cd = 1,

with the minimax fidelity given by

fsF,Cd = inf
%PSsgd

sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg. s40d

IV. EVALUATING THE FIDELITY DISTANCES

A. Fidelities for quantum states and quantum effects

Consider two normal states% ,§ on B=Bshd as quantum channels fromB into the Abelian
algebraA=Bsgd with g.C. In this case, the operational densities%t ,§t of % ,§ coincide with the
corresponding density operatorsr ,s :%t=r and§t=s. The predual maps%T ,§T :AT.C→BT can
then be thought of as thestate creation operations, %Tsld=lr and§Tsld=ls for lPC.

In order to compute the minimax fidelityfs% ,§d, we have to consider allx ,cPB that give the
decompositionsr=x†x and s=c†c. Note that we can always write these decompositions as
purifications

r = o
j

ux jlkx ju, s = o
j

uc jlkc ju,

whereux jlªxu jl , uc jlªcu jl with respect to a fixed orthonormal basishu jlj of h. We then have the
minimum quadratic distance

dH
2 s%,§d = 1

2 inf
xPB:x†x=r

cPB:c†c=s

sup
ÃPSsgd

Ãfsx − cd†sx − cdg ; 1
2 inf

xPB:x†x=r

cPB:c†c=s

Trfsx − cd†sx − cdg,

where the last equality is due to the fact that dimg=1. Expanding the product under the trace, we
can write

dH
2 s%,§d = 1

2fTrsr + sd − sup
x,cPB

hRe Trsx†cd:x†x = r,c†c = sjg s41d

=1 − sup
xPB:x†x=r

cPB:c†c=s

Re Trsx†cd s42d

;1 − fs%,§d. s43d

According to Lemma 1, the supremum in Eq.s42d is attained at anyxPB satisfying the condition
x†x=r, sayx=r1/2, andc=c+ satisfying the equationc+x

†=sxsx†d1/2=xc+
†:

fs%,§d = sup
xPB:x†x=r

cPB:c†c=s

Re Trsx†cd = sup
cPBshd

hReTrsr1/2cd:c†c = sj = Tr Îrs.

Observe that the standard Uhlmann fidelity between the density operatorsr ands ,Fsr ,sd in Eq.
s1d, can be written asFsr ,sd=ir1/2s1/2iT=Tr Îrs. Thus the minimax fidelity between two normal
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states% and § on B, or, equivalently, between the state creation operations%T ,§T :C→BTshd,
agrees with the Uhlmann fidelity between the respective density operatorsr ands of % and§.

Next we turn to the other extreme case, namely that of thestate annihilation operationsF ,C
with the predualsFTsrd=sFt ,rd ,CTsrd=sCt ,rd, corresponding to dimh=1. They are completely
specified by theeffects, i.e., the positive operatorsFt ,CtPBsgd satisfying 0øFt ,Ctø1g, which
can be purified as ins29d, whereG j =k j uG ,Y j =k j uY are the bra-vectors corresponding to an ortho-
normal basishu jlj in g. The squared pointwise minimax distance between the state annihilation
operationsF ,C, or, equivalently between the effectsFt ,Ct, on the setSsgd of normal states%
=rT on Bsgd is given by the minimum

dH
2 sF,Cds%d = 1

2 inf
G,YPBsgd

hTrfsG − Yd†sG − Ydrg:G†G = Ft,Y
tY = Ctj

of the quadratic distance between their purificationsG ,YPBsgd. The solution of this problem is
likewise given by Lemma 1 withR=Ft andS=rCtr. Thus the optimum

dH
2 sF,Cds%d = 1

2TrfsFt + Ctdrg − TrÎFtsrCtrd

is attained at anyGPB satisfying the conditionG†G=Ft, sayG=Ft
1/2, and the correspondingY

=Y+ satisfying the equationY+rG†=ÎGrCtrG†=GrY+
†. The maximum of this distance over all

states,

dH
2 sF,Cd = sup

%PSsgd
dH

2 sF,Cds%d

; sup
%PSsgd

s 1
2 TrfsFt + Ctdrg − TrÎFtsrCtrdd

= sup
%PSsgd

inf
G,YPBsgd

hTrfsG − Yd†sG − Ydrg:G†G = Ft,Y
†Y = Ctj,

is given by the minimax quadratic distance

dH
2 sF,Cd = 1

2 inf
G,YPBsgd

hiG − Yi2:G†G = Ft,Y
†Y = Ctj,

interchange of the extrema following from standard minimax arguments,24 and the fact that allG,
Y satisfying, respectively,G†G=Ft andY†Y=Ct are contained in the unit ball ofBsgd.

B. Semiclassical fidelity

It is straightforward to extend the formalism of Sec. III A involving the commutative Hell-
inger distance between two positive kernels to the case of mappings from a setX into positive
trace-class operators on the Hilbert spaceh, i.e., r :xPX°rsxdPBTshd and s :xPX°ssxd
PBTshd with rsxd ,ssxdù0 for all xPX. We thus have the pointwise Hellinger distance

dH
2 srsxd,ssxdd = s1, 1

2frsxd + ssxdgd − Îs1,rsxdds1,ssxddfsrsxd,ssxdd

in terms of the trace pairingsB,rd=TrsBr̃d of BPB=Bshd andrPBT=BTshd, where

fsrsxd,ssxdd =
s1,Îrsxdssxdd

Îs1,rsxdds1,ssxdd
=

TrÎrsxdssxd
ÎTr rsxdTr ssxd

.

The semi-classical operational distance betweenr=rs·d ands=ss·d can then be defined as

dH
2 sr,sd = sup

xPX
dH

2 srsxd,ssxdd ; idH
2 srs·d,ss·ddi. s44d

When Trrsxd=1=Tr ssxd for all xPX, i.e., whenr and s are classical-to-quantum, c-q sor
semiclassicald, channels, Eq.s44d can be written asdH

2 sr ,sd=1−fsr ,sd, where
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fsr,sd = inf
xPX

Trfrsxd1/2ssxdrsxd1/2g1/2 = inf
xPX

TrÎrsxdssxd ; inf
xPX

Fsrsxd,ssxdd

is the minimax fidelity ofs relative tor.

C. Semiquantum fidelity

Next we consider the opposite of semiclassical operations—namely, thesemiquantum opera-
tions which correspond to quantum measurements as quantum-to-classicalsq-cd channels. Such
operations are given as

Fsbd =E
Y

bsydFtsyddmsyd ; sb,Ftd

on the algebraB=CsYd of continuous bounded functionsb:Y→C, wheresY,BY,md is a measure
space, by specifying the positive operator-valued Bochnerm-integrable functionsFt :Y→A
=Bsgd. If

Fs1d = s1,Ftd = 1g,

the predual mapsA{r°FTsrds·dPCTsYd,

FTsrdsyd ª sFtsyd,rd ; %fFtsydg,

define for each input quantum state%PSsgd a classical probability density onsY,BY,md, that is,
they describe quantum measurements by the positive operator-valued measuressPOVMsd
Msdyd=Ftsyddmsyd.

In order to avoid technicalities in defining the semi-quantum fidelity distance between two q-c
channelsF ,C :B→A, we shall assume thatFtsyd ,Ctsyd are weakly continuous bounded func-
tions onY. Then the squared distancedH

2 sF ,Cd can be written as

dH
2 sF,Cd = inf

G,Y:G†G=Ft,Y
†Y=Ct

IE sGsyd − Ysydd†sGsyd − YsydddmsydI , s45d

where the decompositionsG†G=Ft andY†Y=Ct are understood in the pointwise sense as

Ftsyd = Gsyd†Gsyd, Ctsyd = Ysyd†Ysyd, ∀ y P Y.

The infimum in Eq.s45d is achieved at anyGPA ^ CTsYd satisfying the conditionG†G=Ft, say
Gsyd=Ftsyd1/2, and the correspondingY=Yo satisfying the equation

YosydrGsyd† = fGsydrCtsydrGsyd†g1/2 = GsydrYosyd†.

The maximum of this minimal distance over all states,

dH
2 sF,Cd = sup

%PSsgd
E S1

2
TrfsFtsyd + Ctsyddrg − TrÎFtsydsrCtsydrdDdmsyd,

is equal todH
2 sF ,Cd=1−fsF ,Cd in the measurement operation caseFs1d=1g=Cs1d, where

fsF,Cd = inf
%PSsgd

E TrÎFtsydsrCtsydrddmsyd. s46d

D. Operational fidelity formula

Now we can easily evaluate the minimax formulas30d for the fidelity of two general quantum
operationsF ,C :B→A, B=Bshd, A=Bsgd. The solution of this problem is also given by Lemma
1 with R=Ft andS=sr ^ 1hdCtsr ^ 1hd. For a given%PSsgd, the supremum in

062106-14 Belavkin, D’Ariano, and Raginsky J. Math. Phys. 46, 062106 ~2005!

Downloaded 13 Jun 2005 to 193.206.68.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



dH
2 sF,Cds%d = 1

2sTrfsFt + Ctdsr ^ 1hdg − 2 sup
G,YPBsHd

hRe TrfG†Ysr ^ 1hdg:G†G = Ft,Y
†Y = Ctjd

is equal to TrÎFtfsr ^ 1hdCtsr ^ 1hdg, and is achieved at anyGPBsHd satisfying the condition
G†G=Ft, sayG=Ft

1/2, and the correspondingY=Yo satisfying the equation

Yosr ^ 1hdG† = fGsr ^ 1hdCtsr ^ 1hdG†g1/2 = Gsr ^ 1hdYo
†.

WhenF ,C are quantum channels, or, equivalently, when the predualsFT ,CT are trace preserv-
ing, Theorem 1 says that the maximum of this distance over all states,

dH
2 sF,Cd = sup

%PSsgd
Trs 1

2sFt + Ctdsr ^ 1hd − ÎFtfsr ^ 1hdCtsr ^ 1hdgd , s47d

can be written asdH
2 sF ,Cd=1−fsF ,Cd, where

fsF,Cd = inf
%PSsgd

TrÎFtfsr ^ 1hdCtsr ^ 1hdg s48d

is the minimax fidelity betweenF andC.

E. Operational fidelity in terms of Kraus and Stinespring decompositions

Consider, as before, two quantum channelsF ,C :B→A, whereB=Bshd andA=Bsgd. Given
the minimax fidelity

fsF,Cd = inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

Re TrfG†Ysr ^ 1hdg = inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

uTrfG†Ysr ^ 1hdgu

betweenF andC, where the second equality follows from Lemma 2, the supremum over allG
andY satisfying, respectively,G†G=Ft andY†Y=Ct can be replaced with the supremum over all
Kraus decompositions ofF and C, i.e., over all collectionshFjj, hVjj of bounded operatorsg
→h, determined fromFt ,Ct via Eqs.s29d and s28d:

fsF,Cd = inf
%PSsgd

sup
hFjj,hVjj

Uo
j

%sFj
†VjdU . s49d

Just as in the proof of Theorem 1, we may restrict ourselves only to thoseG ,Y that can be written
asG=UFt

1/2,Y=VCt
1/2 for some isometriesU ,V. Thus, if we writeFt

1/2 andCt
1/2 in the form of

Eq. s28d as

Ft
1/2 = o

j

u jlsF̂ju, Ct
1/2 = o

j

u jlsV̂ju,

then it follows that, given isometriesU, we can write

G = UFt
1/2 = o

j

u jlSo
,

Uj,F̂,U ; o
j

u jlsF̂jsUdu,

and similarly forY=VCt
1/2. Thus

fsF,Cd = inf
%PSsgd

sup
U,V
Uo

j

%fF̂jsUd†V̂jsVdgU = inf
%PSsgd

sup
U
Uo

j

%fF̂jsUd†V̂jgU .

Turning now to the infimum over all normal states% on A;Bsgd, we may equivalently consider
all pairs hw ,Kj, wherew is a normalp-representation ofA on a Hilbert spaceK:
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fsF,Cd ª inf
hw,Kj;yPK,iyi=1

sup
U
Uo

j

kyuwfF̂jsUd†V̂jguylU .

Since all normalp-representations of the full operator algebraBsgd are unitarily equivalent to an
amplificationB°B^ 1k for some Hilbert spacek, we can write

fsF,Cd ª inf
yPg^k;iyi=1

sup
U
Uo

j

kyuF̂jsUd†V̂j ^ 1kuylU . s50d

Introducing the vectorsuy ,Fl , uy ,ClPg ^ k ^ H, defined by

uy,Fl ª o
j

sF̂j ^ 1kdy ^ u jl, uy,Cl ª o
j

sV̂j ^ 1kdy ^ u jl,

we obtain yet another form of the minimax fidelity:

fsF,Cd = inf
yPg^k

sup
U

uky,Fu1g^k ^ Uuy,Clu. s51d

For a fixedyPg ^ k, taking the supremum overU is tantamount to taking the supremum ofukx ujlu
over all pairs of unit vectorsx ,jPg ^ k ^ H such that

TrHuxlkxu = o
j

sF̂ j̃ ^ 1kduylkyusF̂ j̃ ^ 1kd† ; FT ^ idsuylkyud,

TrHujlkju = o
j

sV̂j̃ ^ 1kduylkyusV̂j̃ ^ 1kd† ; CT ^ idsuylkyud,

which, in conjunction with the standard results on the Uhlmann fidelitys1d between density
operators,6,7 finally yields

fsF,Cd = inf
yPg^k:iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd = inf
%PSsg^kd

FsFT ^ idsrd,CT ^ idsrdd.

Note that we may always takek isomorphic tog:

fsF,Cd = inf
yPg^g,iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd. s52d

Given some Kraus decompositionshFjj, hVjj of F and C, respectively, we may define the
operators

Fj ª o
j

Fjj ^ u jl, Vj ª o
j

Vjj ^ u jl

from g into h ^ H and expressF and C in the Stinespring formFsBd=F†sB^ 1HdF, CsBd
=V†sB^ 1HdV scf. Sec. III Bd. Then we may rewrite Eq.s49d as

fsF,Cd = inf
%PSsgd

sup
F,V

uTrsFrV†du,

where the supremum is over allF ,V:g→h ^ H giving the Stinespring decompositions ofF and
C, respectively. We may, as before, fixF and V, say, by considering the “canonical” Kraus

decompositionshF̂jj, hV̂jj, and instead take the supremum over all unitariesUPUsHd:

fsF,Cd = inf
%PSsgd

sup
U

uTrfs1h ^ UdFrV†gu = inf
%PSsgd

sup
U

uTrfU TrhsFrV†dgu,

which yields another useful formula
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fsF,Cd = inf
%PSsgd

iTrhsFrV†diT s53d

for the minimax fidelity between the channelsF ,C. It is, in fact, not hard to show that the
right-hand side of Eq.s53d does not depend on the particular choice of the Stinespring operators
F ,V, as long as we agree to dilate the input Hilbert spaceh by the “canonical” auxiliary Hilbert
spaceH=g ^ h.

We note that the constructions of this section are valid more generally for channels given in
terms of the continual Kraus decompositions

FsBd =E
Z

Fszd†BFszddmszd, CsBd =E
Z

Vszd†BVszddnszd,

provided that the measuresm andn are equivalent, i.e., absolutely continuous with respect to each
other. Then Eq.s49d is a special instance of the more general expression

fsF,Cd = inf
%PSsgd

sup
hFszdj,hVszdj

U%SE
Z

Îdn/dmFszd†VszddmszdDU ,

where dn /dm is the Radon-Nikodym derivative ofn with respect tom, for the case when bothm
andn are counting measures, dm=dn=1, on a finite or countably infinite set.

V. PROPERTIES OF THE OPERATIONAL FIDELITY

In this section we establish several key properties of the minimax fidelity between quantum
operations. These properties follow almost immediately from the corresponding properties en-
joyed by the fidelitys1d on density operators:

sF.1d F is symmetric,Fsr ,sd=Fss ,rd, bounded between 0 and 1, andFsr ,sd=1 if and only
if r=s.

sF.2d F is jointly concave over all pairs of density operators.
sF.3d F is unitarily invariant, i.e.,Fsr ,sd=FsUrU†,UsU†d for any unitaryU.
sF.4d F is monotone with respect to quantum channels:FsFTsrd ,FTssddùFsr ,sd for every

quantum channelF.
sF.5d The Bures distance dBs·, ·dªÎ1−Fs·, ·d is topologically equivalent to the trace-norm

half-distanceDs·, ·d:

2−1/2Dsr,sd ø dBsr,sd ø ÎDsr,sd

fcf. Eq. s3dg. PropertysF.2d, in fact, follows fromstrong concavityof F,2 i.e.,

FSo
i

piri,o
i

qisiD ù o
i

ÎpiqiFsri,sid s54d

for all 0øpi ,qi ø1 such thatoipi =1=oiqi.
Using Eq.s52d, we can immediately obtain for the minimax fidelityfs·, ·d on pairs of quantum

channels the following analogs of propertiessF.1d–sF.4d of the fidelity Fs·, ·d on pairs of density
operators:

sf.1d f is symmetric, bounded between 0 and 1, andfsF ,Cd=1 if and only if F=C.
sf.2d f is jointly concave over all pairs of channels.
sf.3d f is invariant under both left and right composition with unitarily implemented channels,

i.e.,

fsUU + F,UU + Cd = fsF,Cd

and
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fsF + UV,C + UVd = fsF,Cd

for any two channelsF ,C :Bshd→Bsgd and any two unitariesUPUsgd, VPUshd, where
UUsBdªU†BU, andUV is defined analogously.

sf.4d f is monotone with respect to both left and right composition with quantum channels, i.e.,
fsF +F1,C +F1dù fsF ,Cd and fsF2+F ,F2+Cdù fsF ,Cd for any two channelsF ,C :B→A, all
channelsF1 into B, and all channelsF2 on A. Just as in the case of the fidelity between density
operators, the minimax fidelityf possesses the strong concavity property

fSo
i

piFi,o
i

qiCiD ù o
i

Îpiqi fsFi,Cid. s55d

On the other hand, deriving for the minimax fidelityf an analog of propertysF.5d of the Uhlmann
fidelity F requires a bit more work. To this end, let us consider two channelsF ,C :B→A ,B
=Bshd ,A=Bsgd. Suppose first thatg is infinite dimensional and separable. Theng.,2, and we
can rewrite Eq.s55d as

fsF,Cd = inf
yPg^,2;iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd.

The space,2 contains, as a dense subset, the pre-Hilbert space,0
2 of all infinite sequences of

complex numbers with all but finitely many components equal to zero. Using this fact and the
continuity propertysF.5d of the fidelity F, we obtain

fsF,Cd = inf
yPg^,0

2;iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd.

Using this expression in conjunction with Eq.s3d, we get the bounds

fsF,Cd ù 1 − sup
yPg^,0

2:iyi=1

DsFT ^ idsuylkyud,CT ^ idsuylkyudd, s56d

f2sF,Cd ø 1 − sup
yPg^,0

2:iyi=1

D2sFT ^ idsuylkyud − CT ^ idsuylkyudd. s57d

Now, for any completely bounded mapL :Bshd→Bsgd, the image of the sethuylkyu :yPg

^ ,0
2,iyi=1j under the predual mapLT ^ id:BTsg ^ ,0

2d→BTsh ^ ,0
2d is contained in the trace-

norm closure of the linear span ofhujlkju :jPh ^ ,0
2,iji=1j, which is dual to the tensor product

Bshd ^ Ks,2d, whereKs,2d is the space of compact operators on,2. Thus, by duality we have

sup
yPg^,0

2:iyi=1

DsFT ^ idsuylkyud,CT ^ idsuylkyudd = 1
2isF − Cd ^ idKs,2di ; DsF,Cd,

whereDsF ,Cd denotes the CB-norm half-distance1
2iF−CiCB, and the last equality follows from

the formulaiLiCB=iL ^ idKs,2di for any completely bounded mapL.
On the other hand, when dimg=m,`, we can use the fact20 that, for any completely

bounded mapL into Bsgd,

iLiCB = iL ^ idMm
i = iLT ^ idMm

iT,

whereMm denotes the algebra ofm3m complex matrices, it follows that

sup
yPg^g:iyi=1

DsFT ^ 1suylkyud,CT ^ 1suylkyudd = DsF,Cd.

In either case, we immediately derive the inequality
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1 −DsF,Cd ø fsF,Cd ø Î1 −D2sF,Cd, s58d

which, when expressed in terms of the Hellinger distancedHs·, ·dªÎ1− fs·, ·d as

2−1/2DsF,Cd ø dHsF,Cd ø ÎDsF,Cd, s59d

yields the desired property
sf.5d the Hellinger distancedHs·, ·dªÎ1− fs·, ·d is topologically equivalent to the CB-norm

distancefcf. Eq. s59dg.
This completes our survey of the basic properties of the minimax fidelityf.

VI. SOME EXAMPLES AND APPLICATIONS

The expressions for the minimax fidelity, derived in Sec. IV for different kinds of quantum
operations encountered in quantum information theory, share the common feature of being set up
as variational problems, namely, as minimizations of a concave functional over a convex set. This
feature of the minimax fidelity renders the problem of computing it amenable to robust numerical
methodsssee Ref. 3 for detailed discussion of numerical optimization methods for the calculation
of fidelitylike measures in quantum information theoryd. However, there are instances in which the
minimax fidelity between two quantum channels can be written down in a more explicit form. In
this section we sketch some examples of such instances.

Before we proceed, we would like to remind the reader of the assumption we made in Sec.
II B, namely that all the channels we deal with are completely majorized by the trace in the sense
of Ref. 14. This assumption, while allowing us to circumvent certain technicalities involving
unbounded operators, is somewhat restrictive, as one can easily find examples of quantum chan-
nels between infinite-dimensional algebrasse.g., unitarily or isometrically implemented channels;
see Ref. 21 for detailsd that do not satisfy this condition of complete majorization. However,
owing to the CB-continuity of the minimax fidelityscf. Sec. Vd, we may always regard such
channels as CB-limits of sequences of channels with finite-dimensional output algebras. Thus,
given a channelF :B→A ,B=Bshd ,A=Bsgd with dim g=`, we consider a sequencehPnj of
finite-dimensional projections such thatPn→1g strongly, and the corresponding sequencehFnj of
quantum operationsFnsBdªPnFsBdPn, so thatFnsBd→FsBd uniformly as n→` for eachB
PB, and eachFn is a channel fromB into PnAPn, with limn→`iF−FniCB=0.

With this in mind, in the examples below we shall not worry about the issue of bounded
versus unbounded operational densities.

A. Unitary maps

In the case of channelsUU ,UV implemented by the unitariesU ,V:h→h, i.e., UUsBd
=U†BU andUVsBd=V†BV, the minimax fidelityfsF ,Cd is easily evaluated using Eq.s49d:

fsUU,UVd = inf
%PSsgd

u%sWdu,

where we have definedWªU†V. Let SpsWd denote the spectrum ofW, which is a closed compact
subset of the unit circleT in the complex plane, and letEWsdzd denote the corresponding spectral
measure ofW. Then we can write

fsUU,UVd = inf
%PSsgd

UE
SpsWd

zMW,%sdzdU ,

whereMW,%sdzd is the probability measure%fEWsdzdg;sEWsdzd ,rd. Thus
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fsUU,UVd = dists0,coSpsWdd, s60d

whereco SpsWd denotes the closed convex hull of SpsWd, and distsz,Sdª infhuz−z8u :z8PSj for
any zPC and S,C. Clearly, fsUU ,UVd=1 if and only if co SpW,T, i.e., if and only if W
=l1h with ulu=1, which is equivalent toUU=UV.

When dimh,`, SpsWd is a finite subset ofT, so thatco SpsWd is a polygon in the complex
plane, and Eq.s60d shows thatfsUU ,UVd is simply the distanced from this polygon to the origin.
On the other hand, recalling the formula12 DsUU ,UVd=Î1−d2, we see that the upper bound in Eq.
s58d is saturated by the unitarily implemented channels.

B. Random unitary channels

Continuing with the setup from the preceding example, let us consider channels of the form

FsBd = o
i

piUUi
sBd, CsBd = o

i

qiUUi
sBd, s61d

whereUUi
are unitarily implemented channels andp;hpij, q;hqij are probability distributions. It

then follows immediately from the strong concavity propertys55d of the minimax fidelity that

fsF,Cd ù o
i

Îpiqi ; Fsp,qd. s62d

When dimh,`, the inequality ins62d becomes equality when the unitariesUi are orthogonal
in the Hilbert-Schmidt sense, TrUi

†Uk=dim h ·dik. On the other hand, whenh is infinite dimen-
sional, this orthogonality condition does not make sense unless we consider channels given in
terms of continual Kraus decompositions, so that the sums in Eq.s62d are replaced with integrals
with respect to some positive measurem, and agree to understand orthogonality in the sense of
operator-valued Schwartz distributions. As an example, consider the following.

Let h=F, the boson Fock space, leta anda† be the field annihilation and creation operators,
and letDszdªexpsza†− z̄ad, zPC, be the unitary displacement operators obeying the Weyl rela-
tion DszdDsz8d=ei Im zz8Dsz+z8d. Given a functionf PL2sC ,dzd, where dzªdsRezddsIm zd, we
define itsWeyl-Fourier transformasDsfdªp−1/2eCfszdDszddz. Sincef is square integrable,Dsfd
is a Hilbert-Schmidt operator, and it can be easily shown that

TrfDsfd†Dsgdg =E
C

fszdgszddz; kf,glL2sCd, ∀ f,g P L2sCd

so that TrfDszd†Dsz8dg=pds2dsz−z8d ,z,z8PC, where ds2dsldªdsRelddsIm ld is the Dirac
d-function in the complex plane.

With this in mind, consider the family of channelsGsmd :BsFd→BsFd ,mPR+, with the predu-
als given by

GT
smdsrd ª

1

pm
E

C
DszdrDszd† exps− uzu2/mddz

sin quantum optics these channels model the so-calledGaussian displacement noise25d. Then the
minimax fidelity betweenGsmd andGsnd is given by

fsGsmd,Gsndd =
smnd1/2

1

2
sm + nd

. s63d

Owing to the inequality between the geometric and the arithmetic means, the right-hand side of
Eq. s63d is always bounded between 0 and 1, and the maximum value of 1 is attained if and only
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if m=n, i.e.,Gsmd=Gsnd. This, of course, agrees with the properties of the minimax fidelityscf. Sec.
Vd.

C. Master equation

Consider a strongly continuous semigroup of channelshFstd :Bshd→BshdjtPR+, with the
predualsFT

std satisfying the Lindblad master equation26

dFT
stdsrd
dt

= XrX† −
1

2
sX†Xr + rX†Xd s64d

for someXPBshd. Introducing the dilating Hilbert spaceH=h ^ h with the basishu0l , u1l , . . .j, we
can, for an infinitesimal timet=«, write the predual of the channelFs«d in the Stinespring form

FT
s«dsrd = TrHA«rA«

†, s65d

where the mapA« :h→h ^ H is given by

A«y ª s1h − 1
2«X†Xdy ^ u0l + Î«Xy ^ u1l + Os«2d, s66d

Os«2d indicating terms with norm bounded from above byM«2 for some constantM ù0. Note that
A0y=y ^ u0l, so thatTs0d=id. We can then evaluate the partial trace

TrhfA«rA0
†g = s1 − 1

2«kX†Xlrdu0lk0u + Î«kXlru1lk0u + Os«2d, s67d

wherekBlrªTrsBrd for BPBshd. Then, again up to an additive term of operator normOs«2d,

TrhfA«rA0
†g†TrhfA«rA0

†g < fs1 − 1
2«kX†Xlrd2 + «ukXlru2gu0lk0u, s68d

which allows us to compute, up toOs«2d, the minimax fidelity between the channelTs«d after an
infinitesimal time« and the identity map. Using Eq.s53d, we obtain

fsTsed, idd = inf
%PSsgd

iTrhfA«rA0
†giT < Î1 − «C, s69d

where

C = inf
%PSsgd

skX†Xlr − ukXlru2d. s70d

D. Impossibility of quantum bit commitment

The statement of topological equivalence of the noncommutative Hellinger distance and the
CB-norm distance between a pair of quantum channels, i.e., Eq.s59d, is essentially the “continuity
argument” at the heart of a proof of “impossibility of quantum bit commitmentsQBCd.”27 Quan-
tum bit commitment is a cryptographic objective in which one party, Alice, commits a bit to
another party, Bob, in such a way that the corresponding protocol isconcealingsi.e., Bob is not
able to retrieve the bit before the openingd andbinding si.e., Alice cannot change the bit after the
commitmentd. The impossibility proof asserts that if the protocol is perfectly concealing, then it is
necessarily not binding, and invokes a continuity argument for “asymptotically” concealing pro-
tocols, stating that Alice’s probability of successful cheating approaches unity, while Bob’s cheat-
ing probability becomes close to the value1

2 spure guessingd. sThe reader should be aware that the
impossibility proof in Ref. 27 is valid for a restricted class of protocols, i.e., those that are
nonaborting and have a single commitment step. For wider classes of protocols, it is still a matter
of debate whether a secure QBC protocol exists.28d In this example we derive the continuity
argument from the expression of Alice’s and Bob’s respective cheating probabilities as a conse-
quence of the topological equivalence between the Hellinger distance and the CB-norm distance in
Eq. s59d.
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From the point of view of Bob, Alice’s action of committing the bit is equivalent to a channel
FAsbd on an algebraBshd, dimh,`, for each value of the committed bitb=0,1, where A sbd

;hAj
sbdj j=1

k is a collection of operators satisfying the Kraus conditiono j=1
k Aj

sbd†Aj
sbd=1, andFAsbd

denotes the channel induced by this Kraus decomposition. At the opening, Alice informs Bob
about which element of the Kraus decompositionA sbd she actually used in the commitment.
However, prior to unveiling the labelj , Alice can perform anEPR attackwith the purpose of
changing the Kraus decomposition to another equivalent decompositionA sbdsVd;hAj

sbdsVdj, where
Aj

sbdsVdªo,Al
sbdVj, for someVPUsCkd. The EPR attack is achieved by Alice via the unitary

transformationV on an ancillaryk-dimensional spaceH. The conditional probability that Alice
can cheat successfully by convincing Bob that she has committed, say,b=1, while having suc-
cessfully committedb=0 instead, is given by

Pc
AsV,yd = o

j

ukyuAj
s0d†sVdAj

s1d
^ 1Huylu2

isAj
s1d

^ 1Hdyi2 , s71d

where isAj
s0d

^ 1Hdyi2 is the probability that thej th Kraus element is unveiled. WhichV should
Alice use? Without any knowledge ofuyl, the best she can do is to adopt a conservative strategy
of choosing theV that will maximize her cheating probability in the worst-case scenario, namely
for the anonymous stateuyl chosen by Bob to minimizePc

AsV,yd. This is theminimaxchoice ofV,
corresponding to the cheating probability

P̄c
A
ª sup

VPUsCkd
inf

yPh^H;iyi=1
Pc

AsV,yd. s72d

On the other hand, for equiprobable bit valuesbP h0,1j Bob’s optimal probability of cheating is
given by the probability of error in discriminating between the corresponding output states, more
precisely

P̄c
B = 1

2 + 1
4 sup

yPh^H;iyi=1
irAs0d

y − rAs1d
y iT = 1

2f1 +DsFAs0d,FAs1ddg, s73d

where we have definedrA
y
ªFA ^ idsuylkyud. Using Jensen’s inequality, we can bound Alice’s

cheating probabilityPc
AsV,yd from below as

Pc
AsV,yd ù Uo

j

ukyuAj
s0dsVd†Aj

s1d
^ 1HuyluU2

. s74d

Note that the value of the max-min in Eq.s72d will not change if we perform the maximization
over the closed convex hull ofUsCkd, i.e., the setKsCkd of all linear contractions onCk, and the
minimization over the closed convex hull of the pure states onh ^ H, i.e., the setSsh ^ Hd of
states onBsh ^ Hd, thus completing the domain of the max-min to the productKsCkd3Ssh
^ Hd of compact convex sets. Now, the functional

FsV,rd ª o
j

Re TrhrfAj
s0dsVd†Aj

s1d
^ 1Hgj s75d

is affine in bothVPKsCkd andrPSsh ^ Hd, so that we can use standard minimax arguments24 to
justify the interchange of extrema in Eq.s72d, and then apply Lemma 2 to obtain

sup
VPUsCkd

inf
yPh^H

uFsV,uylkyudu = sup
VPKsCkd

inf
%PSsh^Hd

uFsV,rdu s76d

= inf
%PSsh^Hd

sup
VPKsCkd

uFsV,rdu s77d
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= inf
yPh^H;iyi=1

sup
VPUskd

uFsV,uylkyudu. s78d

Now, since a monotone function does not affect the saddle point, we can use Eqs.s50d, s72d, s74d,
and s78d to obtain

P̄c
A ù f2sFAs0d,FAs1dd.

Using Eq.s59d and then Eq.s73d, we finally obtain the chain of estimates

P̄c
A ù f2sFAs0d,FAs1dd ù f1 −DsFAs0d,FAs1ddg2 ù f1 − 2sP̄c

B − 1/2dg2,

where it follows that, for “asymptotically” concealing protocols, i.e., those for whichP̄c
B→ 1

2,
Alice’s probability of cheating will approach unity, and the protocol will not be binding.
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