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Abstract. The debate on the nature of quantum probabilities in relation to Quantum Non Locality has elevated Quantum
Mechanics to the level of an Operational Epistemic Theory. In such context the quantum superposition principle has an
extraneous non epistemic nature. This leads us to seek purely operational foundations for Quantum Mechanics, from which
to derive the current mathematical axiomatization based on Hilbert spaces.

In the present work I present a set of axioms of purely operational nature, based on a general definition of "the experiment",
the operational/epistemic archetype of information retrieval from reality. As we will see, this starting point logically entails a
series of notions [state, conditional state, local state, pure state, faithful state, instrument, propensity (i.e. "effect"), dynamical
and informational equivalence, dynamical and informational compatibility, predictability, discriminability, programmability,
locality, a-causality, rank of the state, maximally chaotic state, maximally entangled state, informationally complete propen-
sity, etc. ], along with a set of rules (addition, convex combination, partial orderings, ... ), which, far from being of quantum
origin as often considered, instead constitute the universal syntactic manual of the operational/epistemic approach. The miss-
ing ingredient is, of course, the quantum superposition axiom for probability amplitudes: for this I propose some substitute
candidates of purely operational/epistemic nature.
Keywords: Foundations, Axiomatics, Measurement Theory
PACS: 03.65.-w

1. INTRODUCTION

Quantum Mechanics is not as any other physical theory. It applies to the entire physical domain, from micro to macro-
physics, independently of the size and the energy scale, from particle physics, to nuclear, atomic, molecular, solid state
physics, from the tiniest particle, to cosmology. Despite such generality, Quantum Mechanics still lacks a physical
axiomatization—a quite embarrassing situation when we teach the theory to students. Why so abstract mathematical
objects such as “Hilbert spaces” stay at the core axiomatic level of our most general physical theory? We are used
to answer: “This is the quantum superposition principle, which entails complementarity and wave-particle dualism”.
That way we save our face.

In its very essence Quantum Mechanics addresses, for the first time, the core problem of Physics: that of Measure-
ment. More generally, I would say, Quantum Mechanics deals with the description of the Physical Experiment. The
probabilistic framework, which, in such context, is generally dictated by the obvious need of working in the presence
of incomplete knowledge, contrarily to our original intentions turns out to be not of epistemic nature, but is truly ontic.
This is the lesson of nonlocal EPR correlations. Incredibly, “God actually plays dice!” Now, this makes the situation
even more embarrassing: on the basis of the quantum superposition principle of probability amplitudes we “physicists”
preach the ontic nature of probability, and elevate Quantum Mechanics to a “Theory of Knowledge”!

Clearly, in this new view, the quantum superposition principle is not an acceptable starting point anymore: for
a Theory of Knowledge we should seek operational axioms of epistemic nature, and be able to derive the usual
mathematical axiomatization from such operational axioms. Shortly: for a Theory of Knowledge we need Axioms of
Knowledge.

In the present work my starting point for this axiomatization is the definition of what an experiment is. Indeed,
“the experiment” is the archetype of the cognitive act, being the prototype interaction with reality able to get
information on it. As we will see, adopting a general definition of experiment that includes all possible interactions
and information exchanges with reality, is a very seminal starting point, which logically entails a series of notions—
such as that of state, conditional state, local state, pure state, faithful state, instrument, propensity (i.e. "effect"),
dynamical and informational equivalence, dynamical and informational compatibility, predictability, discriminability,
programmability, locality, a-causality, rank of a state, etc. ]—along with a set of rules (addition, convex combination,
partial orderings, ... ), which, far from being of quantum origin as often considered, instead constitute the universal
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syntactic manual of the cognitive/operational approach. The missing ingredient is still, of course, the quantum
superposition axiom, and for this I will propose at the end some substitute candidates of purely cognitive/operational
nature.

In the present attempt some expert readers will recognize similarities with the program of other authors during
the seventies, following the Ludwig school [1], which were seeking operational principles to select the structure of
quantum states from all possible convex structures [see, for example, the papers of U. Krause [2], H. Neumann [3],
and E. Størmer [4] collected in the book [5]]. Why these work didn’t have a followup? I think that, besides the fact that
the convex structure by itself is not sufficiently rich mathematically for deriving an underlying Hilbert space structure,
concepts as entanglement and informationally complete measurements (i. e. quantum tomography [6]) were still not
familiar in those days. Recently it has been shown that it is possible to make a complete quantum calibration of a
measuring apparatus [7] or of a quantum operation [8] by using a single pure bipartite state. I think that this gives us
a new unique opportunity for deriving the Hilbert space structure from the convex structure in terms of calibrability
axioms, which relies on the special link between the convex set of transformations and that of states which occurs
in Quantum Mechanics, and which make the transformations of a single system resemble closely states of a bipartite
system [9, 10]

2. AXIOMS FOR THE EXPERIMENT

It is the theory which decides what we can observe!
— Einstein to Heisenberg

General axiom 1 (On inductive-deductive science) In any experimental inductive-deductive science we make ex-
periments to get information on the state of a objectified physical system. Knowledge of such a state will allow us to
predict the results of forthcoming experiments on the same object system. Since we necessarily work with only par-
tial a priori knowledge of both system and experimental apparatus, the rules for the experiment must be given in a
probabilistic setting.

Notice that the information is of the state of the system, not of the system itself. In fact, in order to set the experiment
we need some prior information on the physical system, e. g. if it is an electric current, a field, or a particle, what
is its charge, etc. The goal of the experiment is to determine something unknown (or imprecisely known) about the
system: logically this should enter in the notion of state, as will be given in Def. 2. The boundary between what is the
object and what is its state will depend on the context of the particular experiment, e. g. the charge of a particle can
be a property defining the object system—and used to design the measuring apparatus; if unknown, a property could
be the object of the experiment itself, and, as such, it would enter the definition of state. Again we emphasize that our
purpose is to give only the syntactic manual of the empirical approach, not the semantics, i. e. the specific physical
context.

General axiom 2 (On what is an experiment) An experiment on an object system consists in having it interact with
an apparatus. The interaction between object and apparatus produces one of a set of possible transformations of the
object, each one occurring with some probability. Information on the “state” of the object system at the beginning
of the experiment is gained from the knowledge of which transformation occurred, which is the "outcome" of the
experiment signaled by the apparatus.

It is clear that here "object" and "apparatus" are both physical systems, and the asymmetry between object and
apparatus is just an asymmetry in prior knowledge, namely the apparatus is the system of which the experimenter
has more prior information. Clearly the knowledge gained about the state of the object depends also on the knowledge
of details of the transformation undergone by the object system, and, generally, also on preexisting knowledge of the
system “state” itself. In other words, the experiment can be always regarded as a refinement of knowledge on the object
system.

One should convince himself that the above definition of experiment is very general, and includes all possible
situations. For example, at first sight it may seem that it doesn’t include the case in which the object is not under
the experimenter’s control (e. g. astronomical observations), in the sense that in such case one cannot establish an
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interaction with the object system. However, here also there is an interaction between the object of interest (e. g. the
astronomical object) and another object (e. g. the light) which should be regarded as a part of the apparatus (i. e.
telescope+light). Such cases can also be regarded as "indirect experiments", namely the experiment is performed on
an auxiliary "object" (e. g. the light) which is supposed to have experienced a previous interaction with the ultimate
object of interest, and whose state depends on properties/quantities of it. Also, the customary case in which a "quantity"
or a "quality" is measured without in any way affecting the system corresponds to the case in which all states are left
invariant by the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to the use of a different experimental
apparatus or, at least, to a change of some settings of the apparatus. Abstractly, this corresponds to change the set
{A j} of possible transformations, A j, that the system can undergo. Such change could actually mean really changing
the "dynamics" of the transformations, but it may simply mean changing only their probabilities, or, just their labeling
outcomes. Any such change actually corresponds to a change of the experimental setup. Therefore, the set of all
possible transformations {A j} will be identified with the choice of experimental setting, i. e. with the experiment
itself—or, equivalently, with the action of the experimenter: this will be formalized by the following definition

Definition 1 (Actions/experiments and outcomes) An action or experiment on the object system is given by the set
A ≡ {A j} of possible transformationsA j having overall unit probability, with the apparatus signaling the outcome j
labeling which transformation actually occurred.

Thus the action/experiment is just a complete set of possible transformations that can occur in an experiment. As we
can see now, in a general probabilistic framework the action A is the "cause", whereas the outcome j labeling the
transformation A j that actually occurred is the "effect". The action has to be regarded as the “cause”, since it is the
option of the experimenter, and, as such, it should be viewed as deterministic (at least one transformation A j ∈ A will
occur with certainty), whereas the outcome j—i. e. which transformation A j occurs—is probabilistic. The special case
of a deterministic transformation A corresponds to a singleton action/experimentA ≡ {A }.

In the following, wherever we consider a nondeterministic transformation A by itself, we always regard it in the
context of an experiment, namely for any nondeterministic transformation there always exists a at least complementary
one B such that ω(A )+ω(B) = 1 for all states ω .

3. STATES

According to General Axiom 1 by definition the knowledge of the state of a physical system allows us to predict the
results of forthcoming possible experiments on the system, or, more generally, on another system in the same physical
situation. Then, according to the General Axiom 2 a precise knowledge of the state of a system would allow us to
evaluate the probabilities of any possible transformation for any possible experiment. It follows that the only possible
definition of state is the following

Definition 2 (States) A state ω for a physical system is a rule that provides the probability for any possible transfor-
mation, namely

ω : state, ω(A ) : probability that the transformationA occurs. (1)

We assume that the identical transformation I occurs with probability one, namely

ω(I ) = 1. (2)

This corresponds to a kind of interaction picture, in which we don’t consider the free evolution of the system (the
scheme could be easily generalized to include a free evolution). Mathematically, a state will be a map ω from the
set of physical transformations to the interval [0,1], with the normalization condition (2). Moreover, for every action
A = {A j} one has the normalization of probabilities

∑
A j∈A

ω(A j) = 1 (3)
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for all states ω of the system. As already noticed, in order to include also non-disturbing experiments, one must
conceive situations in which all states are left invariant by each transformation (see also Remark 4 in the following).

The fact that we necessarily work in the presence of partial knowledge about both object and apparatus requires
that the specification of the state and of the transformation could be given incompletely/probabilistically, entailing a
convex structure on states and an addition rule for coexistent transformations. The convex structure of states is given
more precisely by the rule

Rule 1 (Convex structure of states) The possible states of a physical system comprise a convex set: for any two states
ω1 and ω2 we can consider the state ω which is the mixture of ω1 and ω2, corresponding to have ω1 with probability
λ and ω2 with probability 1−λ . We will write

ω = λω1 +(1−λ )ω2, 0 ≤ λ ≤ 1, (4)

and the state ω will correspond to the following probability rule for transformationsA

ω(A ) = λω1(A )+ (1−λ )ω2(A ). (5)

Generalization to more than two states is obtained by induction. In the following the convex set of states will be
denoted by S. We will call pure the states which are the extremal elements of the convex set, namely which cannot be
obtained as mixture of any two states, and we will call mixed the non-extremal ones. As regards transformations, the
addition of coexistent transformations and the convex structure will be considered in Rules 5 and 7.

Recall that for the convex set of states, as for any convex set, one can define partial orderings as follows.

Definition 3 (Partial ordering of states) For ω ,ζ ∈ S, α ∈ [0,1], denote by

1. ω ≺α ζ if there exists a θ ∈ S such that ζ = αω+(1−α)θ ;
2. ω ∼α ζ if ω ≺α ζ and ζ ≺α ω;
3. ω ≺ ζ if there exists α > 0 such that ω ≺α ζ ;
4. ω ∼ ζ if ω ≺ ζ and ζ ≺ ω .

For example, we can "read" the definition of ≺ in the following way: ω ≺ ζ means that ω belongs to an ensemble for
ζ .

Definition 4 (Minimal decomposition of a state) A minimal convex decomposition of a state is a convex expansion
of the state in a minimal set of extremal states.

Definition 5 (Caratheodory rank of a state) The Caratheodory rank rank(ω) of the state ω ∈ S (or simply rank) is
the minimum number of extremal states in terms of which we can write the state as convex combination. This is also
given by dim[Fc(ω)]+ 1, where Fc(ω) ⊆ ∂S is the "face" to which the state ω belongs.

Definition 6 (Caratheodory dimension) We call the maximal rank of a state inS the Caratheodory dimension ofS,
denoted by cdim(S).

Remark 1 According to the Caratheodory’s theorem, for a convex set of real affine dimension n (i. e. embedded in
Rn) one needs at most n+ 1 extremal points to specify any point of the convex set as convex combination. However,
for the convex sets of Quantum Mechanics one needs much fewer extremal points, precisely only

√
dim(S)+ 1 (the

convex sets of states in Quantum Mechanics have real affine dimension dim(S) = k 2 −1, k being the dimension of the
Hilbert space). Therefore, only

√
dim(S)+ 1 pure states are necessary to express each state as a convex combination.

Such states are also a maximal set of perfectly discriminable states (see the following).

Remark 2 It is worth noticing that the dimension of the faces of the full convex set of quantum states S for given
finite dimension of the underlying Hilbert space decreases discontinuously in quadratic ladders. For example, the
8 dimensional convex set of states (corresponding to Hilbert space dimension d = 3) has faces that are 3-d Bloch
spheres. Therefore, the faces of a complete set of quantum states are themselves complete set of quantum states (for
lower dimension of the underlying Hilbert space). Each face of the complete convex set of states is itself a complete
convex set of states at lower Hilbert space dimension. This lead us to consider also the following rule
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Rule 2 The faces of a "complete" set of states are themselves "complete" sets of states.

The above rule needs a definition of what we mean by "completeness", and a possible route could be via the action of
all possible invertible dynamical maps, i. e. the isometric indecomposable transformations of the set of states, namely
the equivalent of unitary transformations (see the following). Notice, however, that the notion of completeness is not
strictly operational, and for this reason we will not pursue this axiomatic route.

Using the partial ordering on the convex set of states we can easily define the maximally chaotic state as follows

Definition 7 (Maximally chaotic state) The maximally chaotic state χ(S) of S is the most mixed state of S, in the
sense that

∀θ ∈ S max{α ∈ [0,1] : θ )α χ(S)} ≥ max{β ∈ [0,1] : χ(S) )β θ}. (6)
An alternative definition is that of barycenter-state

Definition 8 (Alternative definition of maximally chaotic state) The maximally chaotic state χ(S) of the convex
set S is the barycenter of the set, i. e. it can be obtained by averaging over all pure states with the uniform measure,
namely

χ(S) .=
∫

ExtrS
dψψ (7)

where ExtrS denotes the set of extremal points of S, and dψ is the measure that is invariant under isomorphisms of
S.

From Definition 7 it follows that the maximally chaotic state is full-rank, i. e. rank[χ(S)] =
√

dim(S)+ 1. On the
other hand, from Definition 8 it follows that the group of isomorphisms of S leaves the state χ(S) invariant (but
generally χ(S) is not the only invariant state).

4. TRANSFORMATIONS AND CONDITIONED STATES

Rule 3 (Transformations form a monoid) The composition A ◦B of two transformations A and B is itself a
transformation. Consistency of composition of transformations requires associativity, namely

C ◦ (B ◦A ) = (C ◦B)◦A . (8)

There exists the identical transformationI which leaves the physical system invariant, and which for every transfor-
mationA satisfies the composition rule

I ◦A = A ◦I = A . (9)
Therefore, transformations make a semigroup with identity, i. e. a monoid.

Definition 9 (Independent systems and local experiments) We say that two physical systems are independent if on
each system we can perform local experiments that don’t affect the other system for any joint state of the two systems.
This can be expressed synthetically with the commutativity of transformations of the local experiments, namely

A (1) ◦B(2) = B(2) ◦A (1), (10)

where the label n= 1,2 of the transformations denotes the system undergoing the transformation.

In the following, when we have more than one independent system, we will denote local transformations as ordered
strings of transformations as follows

(A ,B,C , . . .) .= A (1) ◦B(2) ◦C (3) ◦ . . . (11)

i. e. the transformation in parentheses corresponds to the local transformation A on system 1, B on system 2, etc.

Rule 4 (Bayes) When composing two transformationsA andB, the probability p(B|A ) thatB occurs conditional
on the previous occurrence of A is given by the Bayes rule

p(B|A ) =
ω(B ◦A )
ω(A )

. (12)
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The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state) The conditional state ωA gives the probability that a transformation B occurs on
the physical system in the state ω after the transformationA has occurred, namely

ωA (B) .=
ω(B ◦A )
ω(A )

. (13)

Remark 3 (Linearity of evolution) At this point it is worth noticing that the present definition of “state”, which
logically follows from the definition of experiment, leads to a notion of evolution as state-conditioning. In this
way, each transformation acts linearly on the state space. In addition, since states are probability functionals on
transformations, by dualism (equivalence classes of) transformations are linear functionals over the state space. This
clarifies the common misconception according to which it is impossible to mimic Quantum Mechanics as a mere
classical probabilistic mechanics on a phase space viewed as a probability space since Quantum Mechanics admits
linear evolutions only, whereas classical mechanics also admits nonlinear evolutions.

In the following we will make extensive use of the functional notation

ωA
.=
ω(· ◦A )
ω(A )

, (14)

where the centered dot stands for the argument of the map. Therefore, the notion of conditional state describes the
most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely nonnegative bounded
functionals ω̃ over the set of transformations with 0 ≤ ω̃(A ) ≤ ω̃(I ) < +∞ for all transformations A . To each
weight ω̃ it corresponds the properly normalized state

ω =
ω̃

ω̃(I )
. (15)

Weights make the convex cone S̃ which is generated by the convex set of states S. We are now in position to introduce
the concept of operation.

Definition 11 (Operation) To each transformation A we can associate a linear map OpA : S −→ S̃, which sends
a state ω into the unnormalized state ω̃A

.= OpA ω ∈ S̃, defined by the relation

ω̃A (B) = ω(B ◦A ). (16)

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transformations to the interval [0,1]. It
is not strictly a state only due to lack of normalization, since 0 < ω̃A (I )≤ 1. The operation Op gives the conditioned
state through the state-reduction rule

ωA =
ω̃A

ω(A )
≡ OpA ω

OpA ω(I )
. (17)

The concept of conditional state naturally leads to the following category of transformations

Definition 12 (Purity of transformations) A transformation is called pure if it preserves purity of states, namely if
ωA is pure for ω pure.

In contrast, we will call mixing a transformation which is not pure. We will also call pure an action made only of pure
transformations and mixing an action containing at least one mixing transformation.
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5. DYNAMICAL AND INFORMATIONAL EQUIVALENCE

From the Bayes rule, or, equivalently, from the definition of conditional state, we see that we can have the following
complementary situations:

1. there are different transformations which produce the same state change, but generally occur with different
probabilities;

2. there are different transformations which always occur with the same probability, but generally affect a different
state change.

The above observation leads us to the following definitions of dynamical and informational equivalences of transfor-
mations.

Definition 13 (Dynamical equivalence of transformations) Two transformations A and B are dynamically equiv-
alent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations) Two transformations A and B are informationally
equivalent if ω(A ) = ω(B) for all possible states ω of the system.

Definition 15 (Complete equivalence of transformations/experiments) Two transformations/experiments are com-
pletely equivalent iff they are both dynamically and informationally equivalent.

Notice that even though two transformations are completely equivalent, in principle they can still be different ex-
perimentally, in the sense that they are achieved with different experimental apparatus. However, we emphasize that
outcomes in different experiments corresponding to equivalent transformations always provide the same information
on the state of the object, and, moreover, the corresponding transformations of the state are the same.

6. INFORMATIONAL COMPATIBILITY

The concept of dynamical equivalence of transformations leads one to introduce a convex structure also for transfor-
mations. We first need the notion of informational compatibility.

Definition 16 (Informational compatibility or coexistence) We say that two transformations A and B are coexis-
tent or informationally compatible if one has

ω(A )+ω(B) ≤ 1, ∀ω ∈ S, (18)

The fact that two transformations are coexistent means that, in principle, they can occur in the same experiment,
namely there exists at least an action containing both of them. We have named the present kind of compatibility
"informational" since it is actually defined on the informational equivalence classes of transformations. Notice that the
relation of coexistence is symmetric, but is not reflexive, since a transformation can be coexistent with itself only if
ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of that introduced by Ludwig [1] for the "effects".
This notion is also related to that of "exclusive" transformations, since they correspond to exclusive outcomes [see also
Ref. [11] in regards "exclusive" implies "coexistent", but generally not the reverse].

We are now in position to define the "addition" of coexistent transformations.

Rule 5 (Addition of coexistent transformations) For any two coexistent transformations A and B we define the
transformation S = A1 + A2 as the transformation corresponding to the event e = {1,2}, namely the apparatus
signals that either A1 or A2 occurred, but doesn’t specify which one. By definition, one has the distributivity rule

∀ω ∈ S ω(A1 +A2) = ω(A1)+ω(A2), (19)

whereas the state conditioning is given by

∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1 +A2)
ωA1 +

ω(A2)
ω(A1 +A2)

ωA2 . (20)
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Notice that the two rules in Eqs. (19) and (20) completely specify the transformation A 1 +A2, both informationally
and dynamically. Eq. (20) can be more easily restated in terms of operations as follows:

∀ω ∈ S OpA1+A2 ω = OpA1 ω+ OpA2 ω . (21)

Addition of compatible transformations is the core of the description of partial knowledge on the experimental
apparatus. Notice also that the same notion of coexistence can extended to "propensities" as well (see Definition
18).

Definition 17 (Indecomposable transformation) We call a transformationT indecomposable, if there are no coex-
istent transformations summing to it.

From the above definition we can see that the equivalent of quantum unitary transformations could be defined in terms
of indecomposable isometric transformations.

Rule 6 (Multiplication of a transformation by a scalar) For each transformation A the transformation λA for
0 ≤ λ ≤ 1 is defined as the transformation which is dynamically equivalent to A , but which occurs with probability
ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations) At this point a warning is in order, as regards the trans-
formations that are dynamically equivalent to the identity, namely the probabilistic identity transformations. According
to the Rule 6 for multiplication of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ). One could now imagine
an hypothetical situation of a "classical" experiment which leaves the object identically undisturbed, independently
of its state, but still with many different outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {p jI }, it would provide no information on the state ω of the object, since by definition the
probabilities of the outcomes will be independent on ω , because ω(p jI ) = p j. Therefore, a "classical" experiment
makes sense only for an action A = {A j} made of non-identical transformations, but with the set of states restricted
to be all invariant under A.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations) The following quantity

||A || = sup
ω∈S

ω(A ), (22)

is a norm on the set of transformations. In terms of such norm all transformations are contractions.

Proof. The quantity in Eq. (22) satisfy the sub-additivity relation ||A +B|| ≤ ||A ||+ ||B||, since

||A +B|| = sup
ω∈S

[ω(A )+ω(B)] ≤ sup
ω∈S

ω(A )+ sup
ω ′∈S

ω ′(B) = ||A ||+ ||B||. (23)

Moreover, it obviously satisfies the identity
||λA || = λ ||A ||. (24)

It is also clear that, by definition, for each transformation A one has ||A || ≤ 1, namely transformations are
contractions.!

Obviously the multiplication of a transformation A by a scalar is more generally defined for a scalar λ ≤ ||A || −1,
which can be larger than unity. In terms of the norm (22) one can equivalently define coexistence (informational
compatibility) using the following corollary

Corollary 1 Two transformationsA and B are coexistent iff A +B is a contraction.

Proof. If the two transformations are coexistent, then from Eqs. (18) and (22) one has that ||A +B|| ≤ 1. On the other
hand, if ||A +B|| ≤ 1, this means that Eq. (22) is satisfied for all states, namely the transformations are coexistent.!

Corollary 2 The transformations λA and (1−λ )B are compatible for any couple of transformationsA andB.
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Proof. Clearly ||λA +(1−λ )B|| ≤ λ ||A ||+(1−λ )||B|| ≤ 1.!
The last corollary implies the rule

Rule 7 (Convex structure of transformations) Transformations form a convex set, namely for any two transforma-
tions A1 and A2 we can consider the transformation A which is the mixture of A1 and A2 with probabilities λ and
1−λ . Formally, we write

A = λA1 +(1−λ )A2, 0 ≤ λ ≤ 1, (25)

with the following meaning: the transformation A is itself a probabilistic transformation, occurring with overall
probability

ω(A ) = λω(A1)+ (1−λ )ω(A2), (26)

meaning that when the transformation A occurred we know that the transformation dynamically was either A1 with
(conditioned) probability λ or A2 with probability (1−λ ).

We have seen that the transformations form a convex set, more specifically, a spherically truncated convex cone,
namely we can always add transformations or multiply a transformation by a positive scalar if the result is a contraction.
In the following we will denote the spherically truncated convex cone of transformations as T.

We should be aware that extremality of transformations in relation to their convex structure is not equivalent to
the concept of purity in Definition 12, since a pure transformation is not necessarily extremal (just consider the
convex combination of two different transformations that map to the same pure state), and vice-versa the fact that
a transformation is mixing doesn’t logically imply that it can be always regarded as a convex combination of extremal
transformations.

Remark 5 (Banach algebra of transformations) The convex cone of transformations can be extended (on the em-
bedding affine space) to a real Banach algebra equipped with the norm given in Theorem 1, the closure corresponding
to an approximation criterion for transformations.

An obvious consequence of the rule 7 is that actions too form a convex set, namely

Rule 8 (Convex structure of actions) Actions make a convex set, namely for any two actions A = {A j} and B =
{B j} we can consider the action C which is the mixture of A and B with probabilities λ and 1−λ

C = λA+(1−λ )B = {λA j,(1−λ )Bi}, 0 ≤ λ ≤ 1, , (27)

with the following meaning: the action C has the union of outcomes of actions A and B, and contains the transforma-
tions λA j and (1−λ )B j which are dynamically equivalent to those of actions A and B.

7. PROPENSITIES

Informational equivalence allows one to define equivalence classes of transformations, which we may want to call
propensities, since they give the occurrence probability of a transformation for each state, i. e. its “disposition” to
occur.

Definition 18 (Propensities) We call propensity an informational equivalence class of transformations.

It is easy to see that the present notion of propensity corresponds closely to the notion of "effect" introduced by
Ludwig [1]. However, we prefer to keep a separate word, since the "effect" has been identified with a quantum
mechanical notion and a precise mathematical object (i. e. a positive contraction). In the following we will denote
propensities with underlined symbols as A , B, etc., and we will use the notation [A ] for the propensity containing
the transformation A , and also write A ′ ∈ [A ] to say that A ′ is informationally equivalent to [A ]. It is clear that λA
and λB belong to the same equivalence class iff A and B are informationally equivalent. This means that also for
propensities multiplication by a scalar can be defined as λ [A ] = [λA ]. Moreover, since for A ′ ∈ [A ] and B′ ∈ [B]
one has A ′ + B′ ∈ [A + B], we can define addition of propensities as [A ] + [B] = [A + B] for any choice of

122

Downloaded 16 Jan 2006 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



representatives A and B of the two added propensities. Also, since all transformations of the same equivalence class
have the same norm, we can extend the definition (22) to propensities as ||[A ]|| = ||A || for any representative A of
the class. It is easy to check sub-additivity on classes, which implies that it is indeed a norm. In fact, one has

||[A ]+ [B]|| = ||A +B|| ≤ ||A ||+ ||B||= ||[A ]||+ ||[B]||. (28)

Therefore, it follows that also propensities form a spherically truncated convex cone (which is a convex set), and in
the following we will denote it by P.

With the present norm for propensities, Ludwig [1] introduces the notion of "ensembles with maximal absorption",
corresponding to the state achieving the norm of the propensity l(ω) = ||l|| and of "ensembles totally absorbed" when
l(ω) = 1.

Remark 6 (Duality between the convex sets of states and of propensities) From the Definition 2 of state it follows
that the convex set of states S and the convex sets of propensities P are dual each other, and the latter can be regarded
as the set of positive linear contractions over the set of states, namely the set of positive functionals l on S with unit
upper bound, and with the functional l [A ] corresponding to the propensity [A ] being defined as

l[A ](ω) .= ω(A ). (29)

In the following we will often identify propensities with their corresponding functionals, and denote them by lowercase
letters a,b,c, . . ., or l1, l2, . . .. Finally, notice that the notion of coexistence (informational compatibility) extends
naturally to propensities.

Remark 7 (Dual cone notation) We can write the propensity linear functionals on S with the equivalent pairing
notations

lA (ω) .= ω(A ) ≡ (A ,ω). (30)

Definition 19 (Observable) We call observable a set of propensities L = {li} which is informationally equivalent to
an action L ∈ A, namely such that there exists an action A = {A j} for of which one has li ∈ A j .

Clearly, the generalized observable is normalized to the constant unit functional, i. e. ∑i li = 1.

Definition 20 (Informationally complete observable) An observable L = {l i} is informationally complete if each
propensity can be written as a linear combination of the of elements of L, namely for each propensity l there exist
coefficients ci(l) such that

l =∑
i
ci(l)li. (31)

Clearly, using an informationally complete observable one can reconstruct any stateω from just the probabilities l i(ω),
since one has

ω(A ) =∑
i
ci(lA )li(ω). (32)

Rule 9 (Partial ordering between propensities) For two propensities l1, l2 ∈ P we write l1 ≤ l2 when l1(ω)≤ l2(ω)
∀ω ∈ S.

In Ref. [1] the present partial ordering is interpreted saying that l 2 is more sensitive than l1.

8. DYNAMIC COMPATIBILITY

Regarding the dynamical face of the concept of "transformation", we can introduce another notion of compatibility,
which is closer to the one usually considered in quantum mechanics.

Definition 21 (Dynamical compatibility) We say that two transformations A and B are dynamically compatible if
they commute, namelyA ◦B = B ◦A .

An example of dynamically compatible transformations is provided by a couple of local transformations on indepen-
dent object systems.
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9. COMPATIBILITY OF EXPERIMENTS

The concept of dynamical compatibility naturally extends to actions as follows.

Definition 22 (Compatible experiments) We call two experiments made with two different apparatuses compatible—
i. e. they can be performed contextually on the same object system—when their relative order is irrelevant, namely their
action are made of transformations that are dynamically compatible.

The above definitions means that the actions A = {A j} and B = {Bi} of two compatible experiments are such that
A j ◦Bi = Bi ◦A j for all transformations of A and B. This allows one to define the contextually joint experiment,
with action C = A&B and C = {Ci j}, where now the possible outcomes are the product events i j corresponding
to transformations Ci j = A j ◦Bi ≡ Bi ◦A j. Notice that when joining contextually two experiments, generally their
outcomes are correlated, namely ω(B i ◦A j) .= ω(Bi)ω(A j), and compatibility only implies the identity

ωA j (Bi)
ωBi(A j)

=
ω(Bi)
ω(A j)

. (33)

The present definition of contextuality may look artificial, but it is in line with the "a-temporal" scenario of our
definition of experiment, where "time" refers only to the before-after ordering between the action—the "cause"—and
the transformation of the object system—the "effect". In this fashion, the only logical way of defining contextually
joint experiments is to consider them as equivalent for any choice of their ordering. Clearly, in any practical definition
of contextual joint experiments, at least we need to have the apparatuses as independent systems themselves. On the
other hand, for incompatible experiments with actions A and B one can always define the experiment corresponding
to the cascade of the previous two on the same object system, with action B◦A = {B i ◦A j}.

Notice how the present definition of compatible experiments is deeply related to that of independent systems.
Indeed, if there exists a nonempty commutant for a complete set of transformations, this will allow one to define
two subsystems, at least in the sense of “virtual subsystems” [12].

The informational counterpart of compatible experiments will be the following

Definition 23 (Informational compatibility of experiments) We say that two experiments with actions A = {A j}
and B = {Bi} are informationally compatible when there exists a third experiment whose action C has marginals
informationally equivalent to A and B, namely we can partition the outcomes in such a way that we can write
C = {Ci j} with ∑iCi j ∈ [A j] and ∑ jCi j ∈ [Bi].

Notice that dynamically compatible experiments are always informationally compatible, since one has

∑
i
ω(Bi ◦A j) =∑

i
ω(A j)ωA j (Bi) ≡ ω(A j),

∑
j
ω(Bi ◦A j) =∑

j
ω(A j ◦Bi) =∑

j
ω(Bi)ωBi(A j) ≡ ω(Bi),

(34)

whereas, generally, for the cascade of experiments B◦A = {B i ◦A j}, one has only ∑iBi ◦A j ∈ [A j] , but generally
∑ jBi ◦A j .∈ [Bi].

10. PREDICTABILITY AND DISTANCES BETWEEN STATES

Definition 24 (Predictability and resolution) We will call a transformation A—and likewise its propensity—
predictable if there exists a state for which A occurs with certainty and some other state for which it never occurs.
The transformation (propensity) will be also called resolved if the state for which it occurs with certainty is unique—
whence pure. An action will be called predictable when it is made only of predictable transformations, and resolved
when all transformations are resolved.

The present notion of predictability for propensity corresponds to that of "decision effects" of Ludwig [1]. For a
predictable transformation A one has ||A || = 1. Notice that a predictable transformation is not deterministic, and
it can generally occur with nonunit probability on some state ω . Predictable propensities A correspond to affine
functions fA on the state space S with 0 ≤ fA ≤ 1 achieving both bounds. Their set will be denoted by P p.
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Via propensities, we can also introduce notions of distance and of orthogonality on the state space S.

Definition 25 (Distance between states) Let P denote the set of propensities on the convex set of states S. Define
the "distance" between states ω ,ζ ∈ S as follows

d(ω ,ζ ) = sup
l∈P

l(ω)− l(ζ ). (35)

Theorem 2 The function (35) is a metric on S.

Proof. For every propensity l, 1− l is also a propensity, whence

d(ω ,ζ ) = sup
l∈P

(l(ω)− l(ζ )) = sup
l′∈P

((1− l′)(ω)− (1− l′)(ζ )) = sup
l′∈P

(l′(ζ )− l′(ω)) = d(ζ ,ω), (36)

namely d is symmetric. On the other hand, d(ω ,ζ ) = 0 implies that ζ = ω , since the two states must give the same
probabilities for all transformations. Finally, one has

d(ω ,ζ ) = sup
l∈P

(l(ω)− l(θ )+ l(θ )− l(ζ ))≤ sup
l∈P

(l(ω)− l(θ ))+ sup
l∈P

(l(θ )− l(ζ )) = d(ω ,θ )+d(θ ,ζ ), (37)

namely it satisfy the triangular inequality, whence d is a metric.!
One can see that, by construction, the distance is bounded as d(ω ,ζ ) ≤ 1, since the maximum value of d(ω ,ζ ) is

achieved for l(ω) = 1 and l(ζ ) = 0. Moreover, since for a linear function on a convex domain both maximum and
minimum are achieved on facets (i. e. convex hulls of some extremal points), this means that the bound d(ω ,ζ ) = 1
can be achieved only when ω and ζ lie on different facets of the convex set. Finally, for convex combinations we have
the following

Lemma 1 Mixing reduces distances linearly.

Proof. For any convex combination θ = αω+(1−α)ζ one has d(θ ,ζ ) = αd(ω ,ζ ), since

d(θ ,ζ ) = sup
l∈P

(αl(ω)+ (1−α)l(ζ )− l(ζ )) = sup
l∈P

(αl(ω)−αl(ζ )) = αd(ω ,ζ ). (38)

Definition 26 (Orthogonality of states) Two statesω ,ζ ∈S are called orthogonal (denoted asω ⊥ ζ ) if d(ω ,ζ ) = 1.

Definition 27 (Metrical dimensionality) The metric dimensionality is the maximum number of pairwise orthogonal
states according to Definition 26.

For example, the metric dimensionality of anyN-hypersphere is 2, since the set of predictable propensity is made of the
linear functions f!m(!n)= 1

2 (1+!n ·!m) where !m is a unit vector, and the metric is d(!n,!n ′) = max!m
1
2!m ·(!n−!n′)≡ 1

2 |!n−!n′|,
whence one sees that only antipodal points have distance 1.

Example 1 Consider the trace-norm distance on the convex set of density operators over the Hilbert space H d(x,y) =
1
2 ||x− y||1. For pure states one has d(x,y) =

√
1−|〈ψx|ψy〉|2. Therefore, the metric structure of H is rediscovered via

the inner metric of the state-space, and orthogonality in H means maximal inner distance d(x,y) = 1 in the state space.

Definition 28 (Isometric transformations) A transformation U is called isometric if it preserves the distance be-
tween states, namely

d(ωU ,ζU ) ≡ d(ω ,ζ ), ∀ω ,ζ ∈ S. (39)
Isometric transformations are isomorphisms of the convex of states S. On the other hand, isomorphisms of the convex
set of propensities P are also isometric transformations of states, since

sup
lA ∈P

ω(A ◦U )− ζ (A ◦U ) = sup
lA ◦U ∈P

ω(A )− ζ (A ) = d(ω ,ζ ). (40)

Definition 29 (Perfectly discriminable set of states) We call a set of states {ωn}n=1,N perfectly discriminable if there
exists an action A = {A j} j=1,N with transformations A j ∈ l j corresponding to a set of predictable propensities
{ln}n=1,N satisfying the relation

ln(ωm) = δnm. (41)
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Definition 30 (Informational dimensionality) We call the informational dimension of the convex set of states S,
denoted by idim(S), the maximal cardinality of perfectly discriminable set of states in S.

Theorem 3 Two orthogonal states are perfectly discriminable.

Proof. If the two states, say ω1 and ω2, are orthogonal, then this means that 1 = d(ω1,ω2) = supl∈P(l(ω1)− l(ω2)),
namely there exists a propensity l1 such that l1(ω1) = 1 and l1(ω2) = 0. Now, consider the propensity l2 = 1− l1, and
this will satisfy by definition l2(ω1) = 0 and l2(ω2) = 1. Now, construct an apparatus with action A = {A1,A2}, with
An ∈ ln, for n= 1,2, and you are done.

Remark 8 Note that it seems that the above theorem doesn’t generalize to more than two mutually orthogonal states.
In fact, if there are N > 2 states that are orthogonal to each other, then we only know that for each of the 1

2N(N−1)
couples of states, say ζ1 and ζ2, there exists a predictable propensity l for which l(ζ1) = 1 and l(ζ2) = 0. This does not
even guarantee that if a state ω is orthogonal to both ζ1 and ζ2, then it should be orthogonal also to any their convex
linear combination. In fact, orthogonality implies the existence of two propensities l 1 and l2 such that l1(ω)= l2(ω)= 1
and l1(ζ1) = l2(ζ2) = 0. Now, the distance of ω from the convex combination αζ 2 +(1−α)ζ1 is given by

d(ω ,αζ2 +(1−α)ζ1) = sup
l∈Pp

[l(ω)−αl(ζ2)− (1−α)l(ζ1)] = sup
l∈Pp

α[l(ω)− l(ζ2)]+ (1−α)[l(ω)− l(ζ1)], (42)

which is equal to one if and only if one has both l(ζ 2) = l(ζ1) = 0. Therefore, in order to preserve orthogonality
for convex combination, we need a functional achieving l(ω) = 1, and for which l(ζ ) = 0 for all states ζ ⊥ ω : it
seems that the existence of such functional is not implied by the existence of many functionals l ζ , with lζ (ζ ) = 1 and
lζ (ω) = 0 for all states ω ⊥ ζ . Also convex combination of the propensities doesn’t help. In fact, consider a linear
combination of the propensities h= β lζ1 +(1−β )lζ2 on the mixture αζ1 +(1−α)ζ2. One has h[αζ1 +(1−α)ζ2] =
β (1−α)lζ1(ζ2)+ (1−β )αlζ2(ζ1) which we want to vanish for all α , giving the following value for β

β =
αlζ2(ζ1)

αlζ2(ζ1)− (1−α)lζ1(ζ2)
, (43)

which not necessarily satisfies 0 ≤ β ≤ 1.

The above considerations lead us to restrict the notion of joint orthogonality as follows

Definition 31 (Joint orthogonality) We say that a set of states S is jointly orthogonal to a given state ω if each state
of their convex hull Co(S) is orthogonal to ω .

Clearly, the definition of joint orthogonality to a state extends to joint orthogonality to a (convex) set of states. We will
denote the convex set of states in S jointly orthogonal to ω by S⊥

ω , and the convex set of states in S jointly orthogonal
to the set S by S⊥

S .
Definition 31 is also equivalent to

Theorem 4 A state ω is jointly orthogonal to a set of states S if and only if there exists a predictable propensity l
achieving l(ω) = 1 and which vanishes identically over the whole set S.

The above theorem also implies the following corollary

Corollary 3 Any set S⊥
S is a planar section of S.

Definition 32 (Discriminating observable) An observable L = {l j} is discriminating for S when it discriminates a
set of states with cardinality equal to the informational dimension idim(S) of S.

Remark 9 It is natural to conjecture that a resolved predictable action (see Definition 24) is the same as a discrimi-
nating observable. In fact, by definition, each transformation of a resolved predictable action must be predictable. On
the other hand, if it is not resolved, then there will be at least an unresolved transformation, which will occur with
probability one for at least two different states. These states could in principle be resolved by another transformation,
but there is no guarantee that such transformation exists. Therefore, it is not obvious whether the cardinality of all
resolved predictable actions are the same, whence it would coincide with idim(S).
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Remark 10 (Different dimensionalities forS) We have introduced three different dimensionalities for the convex
set of states S: 1) the Caratheodory’s dimension cdim(S); 2) the metrical dimension mdim(S); and 3) the informa-
tional dimension idim(S). In Quantum Mechanics they all coincide. However, in general it seems that there are no
definite reasons why they should have the same value. Let’s analyze the possible relation between different definitions.

In order to establish a relation between Caratheodory’s and metrical dimensionalities, one should first establish if:
(a) for any state there always exists a minimal convex decompositions into pure states that are pairwise orthogonal;
(b) any convex combination of pairwise orthogonal states is minimal for the resulting mixed state. Clearly, assertion
(a) would imply that the maximal rank of a state is smaller than the maximal number of pairwise orthogonal states,
namely: cdim(S) ≤ mdim(S). On the other hand, assertion (b) would imply that mdim(S) is the maximal rank of a
state, whence the two dimensions coincide, i. e. mdim(S) = cdim(S).

As regards a relation between informational and metrical dimensionalities, we have noticed in Remark 8 that
pairwise orthogonal states are not necessarily discriminable, whereas, obviously the reverse is true, namely perfectly
discriminable states are pairwise orthogonal. Therefore, the maximal number of perfectly discriminable states is
bounded by the maximal number of pairwise orthogonal states, whence idim(S) ≤ mdim(S).

11. LOCAL STATE

Definition 33 (Local state) In the presence of many independent systems in a joint state Ω, we define the local state
ω(n) of the n-th system the state that gives the probability for any local transformationA on the n-th system, with all
other systems untouched, namely

ω(n)(A ) .=Ω(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (44)

For example, for two systems only, (which is equivalent to group n− 1 systems into a single one), we just write
ω(1)(A ) = Ω(A ,I ). Notice that generally the commutativity Rule 9 doesn’t imply that the occurrence of a trans-
formation B on system 2 doesn’t change the probability of occurrence of any other transformation A on system 1,
namely, generally

A (1) ◦B(2) = B(2) ◦A (1) .=⇒ Ω(·,B)
Ω(I ,B)

=Ω(·,I ). (45)

In other words, the occurrence of the transformation B on system 2 generally affects the conditioned local state on
system 1, namely one has

ΩB(2)(·,I ) .=
Ω(·,B)
Ω(I ,B)

.=Ω(·,I ) ≡ ω(1). (46)

Therefore, in order not to violate the relativity principle, for independent systems (e. g. space-like separated) we need
to require explicitly the acausality principle:

Rule 10 (Acausality of local transformations) Any local action on a system is equivalent to the identity transforma-
tion when viewed from an independent system, namely, in terms of states one has

∀A ∑
A j∈A

Ω(·,A j) =Ω(·,I ) ≡ ω(1) (47)

The acausality of local transformations Rule 10 along with the existence of inequivalent actions imply the existence
of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures) For any two incompatible actions A = {A j} and
B = {Bi}, the following mixtures are the same state

∑
j
p jω j =∑

i
p′iω

′
i ≡ ω , (48)
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where

ω j =
ω(·,A j)
ω(I ,A j)

, p j = ω(I ,A j),

ω ′
i =

ω(·,Bi)
ω(I ,Bi)

, p′i = ω(I ,Bi),

ω .= ω(·,I ).

(49)

Consider now a couple of independent physical systems, say 1 and 2. As we have seen in Eq. (46), a probabilistic
transformation A that occurred on 2 generally affects the local state of 1, which then depends on A as follows

ΩA (2) (·,I ) .=
Ω(·,A )
Ω(I ,A )

= ω(1)
A (2) . (50)

Finally it is worth mentioning that it is possible to define a “maximally entangled state” for a two-partite system on
purely operational grounds as follows

Definition 34 (Maximally entangled state) A maximally entangled state for two identical independent systems is a
pure state Ω for which the local state on each system is maximally chaotic, namely

Ω(·,I ) =Ω(I , ·) = χ(S). (51)

12. FAITHFUL STATE

Definition 35 (Dynamically faithful state) We say that a state Φ of a composite system is dynamically faithful for
the nth component system when acting on it with a transformation A results in an (unnormalized) conditional state
that is in one-to-one correspondence with the dynamical equivalence class [A ] of A , namely the following map is
1-to-1:

Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn, (52)

where in the above equation the transformation A acts locally only on the nth component system.!
"

#
$ !

!
Φ

A
ΦA ,I

Definition 36 (Informationally faithful state) We say that a stateΦ of a composite system is informationally faithful
for the nth component system when acting on it with a transformationA results in an (unnormalized) conditional local
state on the remaining systems that is in one-to-one correspondence with the informational equivalence classA ofA
(i. e. its propensity), namely the following map is 1-to-1:

Φ(· · · ,A , · · · ) ↔ A , (53)

where in the above equation the transformation A acts locally only on the nth component system.

!

!
"

#
$A

Φ
Φ(A , ·)

In the following for simplicity we restrict attention to two component systems, and take the first one for the
nth. Using the definition 10 of conditional state, we see that the state Φ is dynamically faithful when the map
Φ(· ◦ [A ]dyn,I ) is invertible over the set of dynamical equivalence classes of transformations, namely when

∀A , Φ(B1 ◦A ,I ) =Φ(B2 ◦A ,I ) ⇐⇒ B1 ∈ [B2]dyn. (54)
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On the other hand, one can see that the state Φ is informationally faithful when the map Φ(A , ·) is invertible over the
set of informationally equivalence classes of transformations, namely when

∀A , Φ(B1,A ) =Φ(B2,A ) ⇐⇒ B1 ∈ B2. (55)

Definition 37 (Preparationally faithful state) We will call a state Φ of a bipartite system preparationally faithful if
all states of one component can be achieved by a suitable local transformation of the other, namely for every state ω of
the first party there exists a local transformation Tω of the other party for which the conditioned local state coincides
with ω , namely

∀ω ∈ S ∃Tω :
Φ(Tω , ·)
Φ(Tω ,I )

≡ ω . (56)

13. IN SEARCH FOR AN OPERATIONAL AXIOM

In the following I list some possible candidates of operational axioms from which to derive the quantum superposition
principle, namely from which we should be able to determine if a convex set of states is quantum. We will call a convex
set of states S complete quantum convex of states (CQCS or complete QCS) when it coincides with a complete convex
set of quantum states on a given Hilbert space. For example, the Bloch sphere is a CQCS, whereas the unit disk is
a QCS, but not a CQCS. For n > 3 the n-dimensional hypersphere is not a QCS. Similarly, a tetrahedron is a QCS,
but not a CQCS. Notice that the metric is relevant, i. e. an ellipsoid is not equivalent to the Bloch sphere, since the
antipodal states do not have fixed unit distance.

Clearly deriving completeness in terms of an “operational consistency” is the difficult part of the problem, and
indeed assuming a kind of completeness for transformations could be just a restatement of the superposition principle.
Following Hardy[13] we could at most assume that (a) for any state ω ∈ S of a CQCS S, the convex set S⊥

ω is
a CQCS too, and (b) all pure states in S are connected by an isometric indecomposable transformation, and these
form a continuous group. This, however, leaves out the main problem of deriving the tensor product structure for
independent systems. One would be tempted to use the following easy axiom

Conjecture 1 (Existence of maximally entangled states) A convex set of bipartite statesS×2 is a QCS if there exist
maximally entangled states according to Definition 34.

However, this is not of a truly operational nature. An operational axiom could be a calibrability axiom of the kind

Conjecture 2 (Dynamic calibrability) For any bipartite system there exists a pure joint state that is dynamically
faithful for one of the two systems.

We also conjecture that as a consequence such state is also informationally faithful and preparationally faithful, or else

Conjecture 3 (Informational calibrability) For any bipartite system there exists a pure joint state that is informa-
tionally faithful for one of the two systems.

On the other hand, a preparability axiom could be

Conjecture 4 (Preparability) For any bipartite system there exists a pure joint state that is preparationally faithful
for one of the two systems.

From one the above calibrability/preparability conjectures the aim would be to prove something as follows

Conjecture 5 (Dimensionality of composite systems) The informational dimensionality of a composite system is the
product of their informational dimensionalities.

This should follow via the equivalence of the dimensionality of the convex cone of transformations/propensities and
that of unnormalized states.

Another assertion that is certainly true in the quantum case is

Conjecture 6 (Informationally complete discriminating observables) On any bipartite system there exists a dis-
criminating observable that is informationally complete for one of the components for almost all preparations of the
other component.
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The above discriminating observable are just the so-called Bell measurements. Another candidate for an operational
axiom could be the possibility of achieving teleportation of states

Conjecture 7 (Teleportation) There exist a joint bipartite state Φ, a joint bipartite (discriminating) observable
L = {l j} and a set of deterministic indecomposable transformations {U j} by which one can teleport all states as
follows

ω(1)Φ(2,3)(l(1,2)
j , ·U (3)

j )

ω(1)Φ(2,3)(l(1,2)
j ,I )

= ω(3). (57)

Conjecture 8 (Preparability of transformations) It is possible to achieve (probabilistically) any dynamical equiva-
lence class of transformations using only a fixed action A = {A (1,2), . . .} for a fixed outcome and a fixed partite state
Φ, as follows

∃A = {A (1,2), . . .} :
ω(1)Φ(2,3)

B (A (1,2), ·)
ω(1)Φ(2,3)

B (A (1,2),I )
= ω(3)

B . (58)

As working hypothesis I would like to consider the following combined axioms

Conjecture 9 (The minimal “lab”) On any bipartite system there exists:

a) a discriminating observable that is informationally complete for one of the components for almost all prepara-
tions of the other component.

b) a pure joint state which, for the same component system in (a) is: dynamically, informationally, and prepara-
tionally faithful.

Another working hypothesis could be that obtained by combining Conjectures 7 and 8, but I think that Conjecture 9
represents the axiom of the most genuine operational/epistemic nature.

ACKNOWLEDGMENTS

Support from the Italian Minister of University and Research (MIUR) is acknowledged under program Prin 2003. This
work has been possible during my last summer visits at Northwestern University, thanks to the kind ospitality of prof.
H. P. Yuen. I thank P. Perinotti, G. Chiribella, C. Fuchs, K. Svozil, and G. Jaeger for interesting discussions on the
first version of the present manuscript, in particular P. Perinotti, G. Chiribella for a critical analysis, and G. Jaeger for
a careful reading. Definition 7 is due to P. Perinotti.

REFERENCES

1. G. Ludwig, An Axiomatic Basis for Quantum Mechanics I: Derivation of Hilbert Space Structure, Springer, SPR:adr, 1985.
2. U. Krause, The inner orthonormality of convex sets in axiomatic quantum mechanics, pp. 269–280, vol. 29 of [5] (1974).
3. H. Neumann, The structure of ordered Banach spaces in Axiomatic Quantum Mechanics, pp. 116–121, vol. 29 of [5] (1974).
4. E. Størmer, Positive Linear Maps of C∗-algebras, pp. 85–106, vol. 29 of [5] (1974).
5. A. Hartkämper, and H. Neumann, editors, Foundations of Quantum Mechanics and Ordered Linear Spaces, vol. 29, Springer,

SPR:adr, 1974.
6. G. M. D’Ariano, Tomographic methods for universal estimation in quantum optics, IOS Press, Amsterdam, 2002, pp.

385–406, scuola “E. Fermi” on Experimental Quantum Computation and Information.
7. G. M. D’Ariano, P. L. Presti, and L. Maccone, 93, 250407 (2004).
8. G. M. D’Ariano, and P. L. Presti, 86, 4195 (2001).
9. M.-D. Choi, Linear Algebra Appl., 10, 285–290 (1975).
10. A. Jamiolkowski, Rep. Math. Phys., 3, 275 (1972).
11. K. Kraus, Operations and Effects in the Hilbert Space Formulation of Quantum Theory, pp. 206–229, vol. 29 of [5] (1974).
12. P. Zanardi, 87, 077901 (2001).
13. L. Hardy, LANL arXive eprint, pp. 1–34 (2001), quant-ph/0101012.

130

Downloaded 16 Jan 2006 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp


