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prepared in the same state.
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I. INTRODUCTION

The problem of measuring the quantum phase has been a
very long-standing one in quantum mechanics, since Lon-
don’s #1$ and Dirac’s first attempts #2$ in the late 20’s. One
of the main motivations is that the estimation of the phase
shift experienced by a quantum system is the only way of
measuring time with high precision in quantum mechanics,
since we lack a time observable. This posed the problem of
quantum phase estimation naturally within the framework of
frequency standards based on atomic clocks #3$, and more
generally, in high-precision measurements and interferom-
etry, the typical scenario in which the sensitivity of phase
estimation is profitably used.

More recently, the encoding of information into the rela-
tive phase of quantum systems has been exploited in quan-
tum computation and communication. In fact, in quantum
computing most of the existing quantum algorithms can be
regarded as multiparticle interferometers, with the output of
the computation encoded in the relative phase between dif-
ferent paths #4$. On the other hand, in some cryptographic
communication protocols #e.g., the Bennett-Brassard proto-
col !BB84" #5$$ information is encoded into phase properties.

The numerous applications above had focused a great deal
of interest on the problem of optimal phase estimation,
which has been widely studied in a thousand papers !see for
example Ref. #6$" since the beginning of quantum theory
#1,2$. The first satisfactory partial solution of the problem
appeared in the late 70’s !see Refs. #7,8$ for reviews", and
these works are generally regarded as one of the major suc-
cesses of quantum estimation theory and covariant measure-
ments, allowing a first consistent definition of phase, without
the problems suffered by the original definition proposed by
Dirac #2$ in terms of an alleged observable conjugated to the
number operator of the harmonic oscillator.

In the covariant treatment of Ref. #8$, the estimated pa-
rameter is a phase shift resulting from the action of a circle
group of unitary transformations, with generator a self-
adjoint operator with purely integer spectrum. A generaliza-
tion of this method to degenerate phase-shift generator has
been presented in Ref. #9$. Such a general approach can be
applied to any input pure state, along with a restricted class

of mixed states, the so called phase-pure states #9,10$.
The possibility of efficiently estimating the phase for

mixed states is of fundamental interest for practical imple-
mentations, in the presence of unavoidable noise which gen-
erally turns pure states into mixed, and for estimation of
local phase shift on entangled states. As a matter of fact, the
freedom in the choice of the optimal measurement which
results from degenerate shift operators #9$ opens the problem
of the stability of the quality of the estimation with increas-
ing mixing of the shifted state. The problem of optimal phase
estimation on mixed states is also very relevant conceptually,
the phase being one of the most elusive quantum concepts.
The main reason why the problem of optimal phase estima-
tion on mixed states has never been addressed systematically
so far is due to the intrinsic technical difficulties faced in any
quantum estimation problem with mixed states. In this paper
we derive an optimal measurement for phase estimation on
qubits in mixed states, for an arbitrary number N of qubits
prepared in the same state, using either the Uhlman fidelity
or the periodicized variance as a figure of merit.

II. THEORETICAL DERIVATION

Let us consider a system of N identical qubits prepared in
the same mixed state "n! = 1

2 !I+n! ·#! ", where %n! %!r$1 and #i
are the three Pauli matrices. The total state of the N qubits is
described by the density matrix Rn! ="n!

"N. The phase transfor-
mation U% is generated by the z component of the total an-
gular momentum Jz= 1

2&k=1
N #z

!k", namely

Rn!!%" = U%Rn!U%
† = #e−i!%/2"#z"n!e

i!%/2"#z$"N. !1"

The problem is now to estimate the unknown phase shift %
on the known state Rn!. We consider a covariant measure-
ment, namely we require that the efficiency of the measure-
ment procedure does not depend on the value of the phase to
be estimated. In this case, without loss of generality we can
assume that the initial state "n! has no component along #y,
corresponding to real matrix "n! in the #z representation. The
phase estimation problem then resorts to find the best
Positive Operator Valued Measure !POVM" #7$ P!d%" for
determining the unknown parameter % in Eq. !1". The fact
that P!d%" is a POVM corresponds to the constraints
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P!d%" & 0, '
0

2'

P!d%" = I . !2"

In the quantum estimation approach the optimality is defined
by maximizing the average of a given figure of merit
C!% ,%!", assuming a uniform prior distribution of the pa-
rameter %

(C) = '
0

2' d%

2'
'

0

2'

C!%,%!"Tr#U%Rn!U%
† P!d%!"$ , !3"

where C!% ,%!"=C!%−%!". In Ref. #8$ it was proved that the
solution for an estimation problem covariant under a unitary
group representation can be written as the group orbit under
the same representation of a fixed positive operator ( !called
seed of the POVM", and for the present case one has

P!d%!" = U%!(U%!
† d%!

2'
. !4"

In the following we will denote by %m ,a) an orthonormal
basis, with m denoting the eigenvalues of 1

2Jz, which label
the equivalence classes of irreducible representations of the
group *U%+, while a is a degeneration index, corresponding
to the multiplicity space of the representation m. The normal-
ization condition !2" for the POVM P!d%" implies that
(m ,a%(%m ,b)=0 for a!b, whereas (m ,a%(%m ,a)=1 for all a.

In quantum estimation theory the quantity to be mini-
mized can be always written in the form of the expectation of
a cost operator as follows:

(C) = '
0

2' d%!

2'
C!%!"Tr#Rn!U%!(U%!

† $ . !5"

The choice of the cost function C!%" depends on the estima-
tion criterion. The most commonly adopted criteria are the
periodicized variance

C!%" , v!%" = 4 sin2 %

2
= 2!1 − cos %" , !6"

or the !opposite of the" fidelity between the true and the
estimated states, which for mixed states has the well-known
Uhlman’s form #11$

C!%" , 1 − F!%" = 1 − #Tr--U%"n!U%
† "n!-U%"n!U%

† $2,

!7"

which for qubits simplifies as follows #12$:

1 − F!%" =
r2

2
!1 − cos %" . !8"

Both cost functions depend on % only through its cosine;
therefore, we need to maximize the averaged cos %, namely

(c) =
1
2'0

2' d%!

2'
!ei%! + e−i%!"Tr#Rn!U%!(U%!

† $ . !9"

The evaluation of the integral in Eq. !9" leads to the follow-
ing expression:

(c) = Re &
m,a,b

(m,a%(%m + 1,b)(m + 1,b%Rn!%m,a) . !10"

We now decompose ""N into irreducible representations of
SU!2", as shown in Ref. #13$, recasting Rn! into invariant
block-diagonal form on the orthonormal basis %j ,m ,))b!

=Uj,)%j ,m ,1)b! for the minimal invariant subspaces of the
SU!2" representations, with b! =n! /r, and Uj,) denoting a suit-
able set of unitary operators

Rn! ! "n!
"N = &

j=((N/2))

J

!r+r−"J&
)=1

dj

Uj,)* j,1Uj,)
† , !11"

* j,1 = &
m=−j

j . r+

r−
/m

%j,m,1)b!(j,m,1% , !12"

%j,m,1)b! = %j,m)b! " %+−)"J−j , !13"

where r±!
1
2 !1±r", ((x)) denotes the fractional part of x !i.e.,

((N /2))=0 for N even and ((N /2))=1/2 for N odd", J
=N /2, and dj is the multiplicity of the jth irreducible repre-
sentation of SU!2"

dj = . 2J

J − j
/ − . 2J

J − j − 1
/ , !14"

whereas %+−) denotes the singlet state. This decomposition is
useful since m , j ,) label also the irreducible representations
of *U%+, m being the eigenvalue of Jz, and j ,) becoming
both degeneration indices. The block-diagonal form of Rn!
shows that the only coupling produced by the phase shift
between irreducible components with m and m+1 can occur
only between vectors in the same invariant subspace j ,) of
SU!2". Upon recasting Rn! in the form of Eq. !11", the value
of (c) in Eq. !10" involves only the following terms:

(c) = Re &
m,j)

(m, j)%(%m + 1, j))(m + 1, j)%Rn!%m, j)) ,

!15"

where we used the short notation %m , j))! %j ,m ,))z, since
the subspaces j ,) are invariant under any unitary in SU!2",
and %j ,m ,))b! =T!j"!g"%j ,m ,))z for some g"SU!2". Now, the
following bounding holds:

(c) , 0 &
m,j)

(m, j)%(%m + 1, j))(m + 1, j)%Rn!%m, j))0
, &

m,j)
%(m, j)%(%m + 1, j))(m + 1, j)%Rn!%m, j))%

, &
m,j)

%(m + 1, j)%Rn!%m, j))% , !16"

where the last bound follows from positivity of (. We show
now that all bounds can be achieved by a suitable choice of
the operator ( compatible with constraints !2". The first two
bounds can indeed be achieved by choosing the phases of the
matrix elements (m , j ,)%(%m+1, j)) in such a way that they
compensate the corresponding phases of (m
+1, j)%Rn!%m , j)). The last bound is achieved by just taking
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the moduli of the matrix elements (m , j)%(%m+1, j)) to be 1.
It remains to prove that these choices are compatible with
positivity. In order to show this, let us write

(m + 1, j)%Rn!%m, j)) = %(m + 1, j)%Rn!%m, j))%ei-!m+1,m,j)".

!17"

Since only the elements on the first overdiagonal and under-
diagonal are involved, one can write the phases -!m
+1,m , j)" as the difference of two functions as follows:

-!m + 1,m, j)" = .!m, j)" − .!m + 1, j)" , !18"

as the number of independent linear equations in Eq. !18" is
2N−1 while the unknown phases are 2N. Then, one can take

( = &
j,)

%e!j,)")(e!j,)"% , !19"

where %e!j ,)") is the generalized Susskind-Glogower vector

%e!j,)") = &
m=−j

j

ei.!m,j)"%m, j,)) . !20"

It is immediately clear that Eq. !19" represents a positive
operator and by construction ( produces a normalized
POVM, while achieving the bounding in Eq. !16".

Specifically, for a collection of identically prepared mixed
initial states, we have

(c) = &
m,j,)

%(m + 1, j)%Rn!%m, j))% = &
m,j,)

!r+r−"J

/ 0&
n
. r+

r−
/n

(j,m + 1,)%j,n,))b!(j,n,)%j,m,))0
= &

j=((N/2))

J

&
m=−j

j

dj!r+r−"J0&
n
. r+

r−
/n

T!j"!gb!"m+1,nT!j"!gb!"n,m
† 0 .

!21"

Notice that, since we assumed that n! has no component along
the direction y, then gb! is just the rotation around the axis y
connecting the oriented z axis with b! , namely T!gb!"=ei0Jy for
some 0, with Jy = 1

2&k=1
N #y

!k".

III. NUMERICAL RESULTS

The expression for the Wigner matrix elements T!j"!gb!"lk
is given by #14$

T!j"!gb!"lk = &
t

!− 1"t
-!j + l"!!j − l"!!j + k"!!j − k"!

!j + l − t"!!j − k − t"!!t − l + k"!t!

/ cos2j+l−k 0

2
sin2t−l+k 0

2
. !22"

The explicit expression of Eq. !21" is very lengthy, and
has been evaluated using symbolic calculus for J up to 21/2,
namely for a total number of spins equal to 21. The plot of
the averaged cosine (c) as a function of 0 and r is repre-
sented in Fig. 1 and exhibits two interesting intuitive fea-

tures. The first is that the maximum versus 0 occurs for 0
=' /2, namely for qubits lying in the equatorial plane. The
second is the improving figure of merit versus the purity r.
Equatorial pure qubits are optimal for phase detection; how-
ever, the figure of merit is quite stable around its maxima,
still with N=10 copies.

Figure 2 shows the averaged cosine (c) versus the number
of qubits N for equatorial states. Numerically, for N→1 we
find the asymptotic behavior 2!1− (c)"2N−1. More precisely,
for the Uhlman fidelity F in Eq. !7" we find an asymptotic
behavior saturating the Cramer-Rao lower bound #15$. This
gives a strict lower bound for variance 3%2 valid for any
estimate. For independent copies, one has #7$

FIG. 1. !Color online" The plot of (c) as a function of 0 and r.
The plots correspond to systems of 10 qubits and 20 qubits,
respectively.

FIG. 2. The logarithmic plots represent 2!1− (c)", where (c) is
the averaged cosine, as a function of the number of spins N, for 0
=' /2 and for the following values of r: " r=0.7, # r=0.8, # r
=0.9, $ r=1.
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3%2 &
1
N

Tr#!""/"%"L$−1, !23"

where for each % the operator L is defined by the identity

""/"% !
1
2

!"L + L"" . !24"

Notice that the bound holds for any estimate, regardless of
the nature of the measurement !corresponding to either joint
or separable POVMs". Since the estimation is covariant, we
can just consider %=0. A simple evaluation shows that L
=r cos 0#y, and the bound is then given by
!1/N"Tr#"0L2$−1=1/ !Nr2 cos2 0", namely

3%2 &
1
N

1
r2 cos2 0

. !25"

For small 3%2, using the Taylor expansion of the cosine
one has 3%212!1− (c)". In Fig. 3 we plot 2!1− (c)"N of our
optimal estimation for 0=0 versus r for N=16,18,20,
against the Cramer-Rao bound 1/r2. From the comparison

we see that our estimation approaches the Cramer-Rao bound
for large N. Notice that, according to recent studies of theo-
retical statistics #16$, there should exist a separable strategy
!such as an adaptive scheme" which is not necessarily cova-
riant; nevertheless, it would be able to achieve the same
Cramer-Rao bound asymptotically: such noncovariant
schemes, e.g., homodyne-based estimation of the phase, will
be the subject of further studies.

IV. CONCLUSIONS

In conclusion, we have presented an optimal measurement
for phase estimation on N qubits all prepared in the same
arbitrary mixed state. The Uhlman fidelity saturates the
Cramer-Rao bound for this problem, confirming the optimal-
ity of the measurement. An optimal estimation is achieved
for equatorial qubits and generally the fidelity is improving
with purity. The specific form of the optimal POVM in terms
of the generalized Susskind-Glogower vector in Eqs. !20"
and !13" suggests possible physical implementations in terms
of a generalized multipartite Bell measurement.
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FIG. 3. The logarithmic plot of 2N!1− (c)" vs r, for N
=16,18,20 and 0=0. The line on the bottom represents the bound
given by the Cramer-Rao inequality, namely 1/r2.
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