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Impossibility of perfect quantum sealing of classical information.
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Unità di Pavia, Via Bassi 6, I–27100 Pavia, Italy †

Received January 13, 2005

Sealing information means making it publicly available, but with the possibility of know-
ing if it has been read. Commenting on [1], we will show that perfect quantum sealing
is not possible for perfectly retrievable information, due to the possibility of performing
a perfect measurement without disturbance, even on unknown states. The measurement
is a collective one, and this makes the protocol of quantum sealing very interesting as
the only example of the power of collective measurements in breaking security.
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1. Introduction

Recently the idea of a quantum seal has been proposed1. It was introduced as the
quantum version of a classical seal. Classical seals is what was used before the time
of electronic transfer to seal important documents or letters, and it consists of a
wafer of molten wax into which was pressed the distinctive seal of the sender. In
the quantum version the seal becomes a way of encoding a classical message into
quantum states. Ideally the quantum seal should possess exactly the same properties
as the classical seal, however, as it will be shown here, some of the requirements
are too restrictive to allow a perfect quantum mechanical solution.

The paper is organized as follows. In Sections 2 and 3 we review the original
ideas of quantum sealing. In Section 4 we present the impossibility proof for a
certain class of quantum seals, including the original proposed scheme. Finally, we
summarize our results, and discuss alternative ideas in Section 5.

2. The sealing protocol

The classical wax seal has some very particular properties. First of all, it is impor-
tant to realize that the sender of the sealed letter is not committed to the content,
a new letter can always be written and sealed, and substitutes the previous one.
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The seal serves two purposes: it provides some kind of authentication to persons
with prior knowledge of the symbol on the seal, and it indicates if the envelope has
been opened. Notice furthermore that the seal can be broken by anyone who wishes
to learn the content of the letter. The classical seal does not provide security for
the content, but a way of knowing if the letter has been read.

The quantum seal as proposed in reference [1] works in the following way: Alice,
who wants to write a classical message and seal it with a quantum seal, encodes
one bit of information into a product state of three qubits. Two of the qubits, the
message qubits, will be in the same state |0〉 or |1〉 (of the computational (z)-basis),
depending on whether Alice wants to encode bit value ’0’ or ’1’. The third qubit,
the control qubit, will at random be prepared in one of the four states |0x〉, |1x〉,
|0y〉 or |1y〉. Notice that these six states together form the three mutually unbiased
bases in two dimensions. In each triplet of qubits the position of the control qubit
is for security chosen at random.

When Alice has written her full message, which is a product state of many
qubits, she stores it in a quantum memory in a publicly accessible place, and an-
nounces that the reading basis of the message is the z-basis. The knowledge of the
message reading basis allows everyone to read the message, because a measurement
in the z-direction followed by a simple majority vote on the results of each triplet
will reveal the bit value encoded by Alice. For example, consider the following
triplet of qubits |0〉|0y〉|0〉, a measurement of each single qubit in the z-basis will
with equal probability give either ’000’ or ’010’, and a majority vote will tell the
reader that in either case the bit value encoded by Alice was ’0’. Notice that Alice
can at any moment check if the message has been read. This is due to the fact that
a measurement in the z-basis will change the state of the control qubits, and since
Alice knows the position of each control qubit, she can check if the state has been
changed.

This far there is nothing which allows intended readers to verify if the message
has been read. As in the classical case, this step requires that the reader has ad-
ditional information. This problem is solved by allowing Alice to distribute copies
of some of the qubits in the message among the intended readers, Bob-1,.. Bob-N.
Each Bob will be given a small set of qubits in states corresponding to specific
positions in the sealed message, and he will also be told the position of each of the
qubits, but what is very important he will not be told the state!

In order for Bob to check if the message has been read, he can borrow from
the sealed message the qubits which correspond to the copies Alice has provided
him with, and on each pair he can perform a so-called SWAP-test2. A SWAP-test
allows to check if two states are identical without any knowledge of the state, and
moreover, if the states are identical they will not be disturbed by the test. This
means that the SWAP-test performed on an undisturbed sealed message will not
inflict any errors.

The quantum sealing protocol as given above, contains practically all the desired
features of a quantum seal: Alice is not committed, she can always write a new
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message and seal it. By revealing the reading basis, she enables the whole world
to read her message, but by adding control qubits she can verify if someone has
actually read it. Even more, by giving additional qubits to the intended readers
they too will be able to check if the message has been read, by performing the
SWAP-test, without causing disturbance and without learning anything about the
message.

3. Reading without breaking the seal: collective measurements

As was already pointed out in the original paper on quantum seals1 the above pro-
tocol for quantum seals is only secure against single qubit attacks. Unfortunately it
is not secure against collective attacks. Actually, by performing collective measure-
ments on each triplet of qubits (corresponding to one encoded classical bit), it is
possible to learn the encoded bit value without introducing any kind of errors. This
is due to the fact that the twelve three qubit states which encode the 0 value are
orthogonal to the twelve three qubit states which encode value 1. Indeed all the 0-
states lie in a subspace spanned by the following states (in the z-basis), |000〉, |001〉,
|010〉 and |100〉, whereas all the 1-states lie in the orthogonal subspace spanned by
|111〉, |110〉, |101〉 and |011〉. This means that a measurement of the corresponding
projectors:

P (0) = |000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |100〉〈100|, (1)

P (1) = |111〉〈111|+ |110〉〈110|+ |101〉〈101|+ |011〉〈011| (2)

will distinguish perfectly between the 0 and the 1 values — without disturbing the
state. This means that a collective measurement of this kind will allow the sealed
message to be read without disturbance, which means to learn the message without
introducing errors whence avoid detection.

Notice that the set of states used to encode the 0 value is not orthogonal,
and similarly for the value 1, which means that it is impossible to distinguish
among states within each set with certainty. Indeed, someone performing collective
measurements will be able to read the sealed message without detection, because the
measurement will reveal the classical bit value encoded in the triplet of states, but
the measurement will not reveal the quantum state. It is worth emphasizing again
the collective nature of the measurement, that, as we’ll see, is a general feature of
our impossibility proof. Indeed, the sealing protocol provides a unique illustration
of the power of collective measurements in breaking security.

4. The impossibility proof

Is it always possible to make perfect discrimination between two sets of states
without disturbing the measured system, even without a complete knowledge of
the quantum state? This is essentially the problem underlying the possibility of
achieving a secure quantum protocol to seal classical information. In fact, in order
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to make information publicly available, one needs to disclose publicly the procedure
of the quantum measurement which perfectly discriminates the encoded values of
the logical bit. On the other hand, the possibility of knowing that the seal has been
opened needs a signature left on the quantum system signaling that the system
has been measured, namely the measurement must produce a ”disturbance” on the
system.

The general scenario of the quantum protocol for sealing classical information
is the following. We know that the classical bit is encoded in two families of states,
here denoted by

|ψ(b)
λ 〉 ∈ H, b = 0, 1, (3)

where H is the global Hilbert space on which the logical bit is encoded, and λ ∈ Λ
is a running parameter labeling the states of the family. The fact that the classical
information is publicly available means that there is an openly known POVM {P (b)}
on H namely

P (b) ≥ 0, b = 0, 1, P (0) + P (1) = IH. (4)

If we consider the situation of no reading-error for the classical information, then
we must have

〈ψ(b)
λ |P (b′)|ψ(b)

λ 〉 = δbb′ , ∀λ ∈ Λ. (5)

Notice that, since P (b′) is positive, the square root of the operator is well defined
and Eq. (5) is equivalent to

〈ψ(b)
λ |

√
P (b′)

√
P (b′)|ψ(b)

λ 〉 = ‖
√

P (b′)ψ
(b)
λ ‖2 = δbb′ , ∀λ ∈ Λ, (6)

namely
√

P (b′)|ψ(b)
λ 〉 = 0, for b �= b′, ∀λ ∈ Λ, (7)

Upon defining the two Hilbert subspaces

H(b) = Span{|ψ(b)
λ 〉, λ ∈ Λ}, (8)

Eq. (5) tells us that the POVM element P (0) must have support orthogonal to
H(1), and P (1) must have support orthogonal to H(0). This also implies that H(0) is
orthogonal to H(1), since, otherwise, there would exist a common subspace whose
elements, e. g. |φ(0)〉 = |ϕ(1)〉 would give

〈φ(0)|P (1)|φ(0)〉 =
∑

λ,λ′
〈φ(0)|ψ(0)

λ 〉〈ψ(0)
λ |P (1)|ψ(0)

λ′ 〉〈ψ(0)
λ′ |φ(0)〉 = 0, (9)

and analogously 〈ϕ(1)|P (0)|ϕ(1)〉 = 0. But, since |φ(0)〉 = |ϕ(1)〉 one also has that
〈ϕ(1)|P (1)|ϕ(1)〉 = 0 (and 〈φ(0)|P (0)|φ(0)〉 = 0), namely 〈ϕ(1)|P (0) + P (1)|ϕ(1)〉 = 0,
which contradicts completeness. In this way we have proved that H(0) is orthogonal
to H(1), namely one has the Hilbert space direct-sum decomposition

H = H(0) ⊕H(1). (10)
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On the other hand the direct-sum decomposition (10) implies that the two POVM
elements must be orthogonal projectors, since they have orthogonal support and
are complementary. If the two Hilbert subspaces H(0) and H(1) are not isomorphic,
then we can always extend the smallest one in such a way to make them so. Then,
without loss of generality, we can write the (extended) Hilbert space H as follows

H = H(0) ⊕H(1) 	 H(0) ⊗ C
2. (11)

In the logical-bit tensor product decomposition (11), the two families of states
rewrite as follows

|ψ(b)
λ 〉 .= |ψλ〉 ⊗ |b〉 ∈ H, b = 0, 1, (12)

and the POVM is expressed as follows

P (b) = IH ⊗ |b〉〈b|. (13)

The POVM (13) can be achieved by the Lűders measurement

ρ −→ P (b)ρP (b)

Tr[P (b)ρP (b)]
, p(b) = Tr[P (b)ρP (b)], (14)

where p(b) denotes the probability of outcome b = 0, 1. Clearly the measurement
(14) allows to distinguish between the logical bits without disturbing the two fam-
ilies of states in Eq. (3).

In the case of the protocol above we have

H(0) = Span{|000〉, |001〉, |010〉, |100〉}, (15)

H(1) = Span{|111〉, |110〉, |101〉, |011〉}, (16)

and the embedding (11) can be achieved, for example by the unitary transformation
which just exchanges only the two states |011〉 and |100〉, with the logical qubit
played by the first physical one.

5. Discussion and future developments

We have shown that perfect quantum sealing of classical information is not possible
if the information is perfectly retrievable, namely the seal is insecure when classical
information is encoded into quantum states and classical error correction codes are
used to ensure error free reading of the sealed message. This is due to the fact that
the resulting quantum states representing the logical bit value (in the above exam-
ple three qubit states) become orthogonal, hence the quantum seal can be broken
by a collective measurement. We emphasize that the collective measurement can
only distinguish between the logical bit values, whereas the specific state remains
unknown and undisturbed. Quantum seals are a concrete example of the power of
collective measurements in breaking security.

We want to point out that sealing classical information by means of classical
error correcting codes into quantum states is not the only way of implementing to
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idea of quantum seals. Chau3 has presented a version of quantum seals which seals
quantum information into quantum states by means of entanglement and quantum
error correcting codes. Unfortunately the protocol works for one (or few) authorized
verifier and not as was originally proposed, that all intended readers can verify that
the seal is still intact. More recently, Singh and Srikanth4 have proposed to use
quantum seals in combination with secret sharing, so that it is not the message
which is sealed, but each share. In principle this allows for sealing both classical
and quantum information. By sealing the shares and not the message they can
avoid the problem which we have been addressing in this paper.

Our impossibility proof forbids perfect security of sealing for perfect retrievabil-
ity of classical information. However, it is in principle possible to restore security
when the information cannot be recovered perfectly5.
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