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Any physical transformation that equally distributes quantum information over a large number M of
users can be approximated by a classical broadcasting of measurement outcomes. The accuracy of the
approximation is at least of the order O!M"1#. In particular, quantum cloning of pure and mixed states can
be approximated via quantum state estimation. As an example, for optimal qubit cloning with 10 output
copies, a single user has an error probability perr $ 0:45 in distinguishing classical from quantum output,
a value close to the error probability of the random guess.
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Differently from classical information, which can be
perfectly read out and copied, quantum information can-
not, because nonorthogonal quantum states can be neither
perfectly distinguished [1], nor perfectly copied [2].
Because ideal distribution of quantum information is im-
possible, one is then interested in the performance limits of
optimal distribution, and such interest has focused much
attention in the literature to the problem of optimal cloning
[3]. Optimal cloning consists in finding the physical trans-
formation that converts N copies of a pure state, randomly
drawn from a given set, into the best possible approxima-
tion of M $ N copies of the same state. More recently, the
analogous problem for mixed states (optimal broadcasting)
has been considered [4]. In both cases of pure and mixed
states, the optimal transformation requires a coherent in-
teraction of the input systems with a set of ancillae. On the
other hand, classical incoherent schemes, such as the
measure-and-prepare, where the N initial copies are mea-
sured and M copies of an estimated state are prepared, are
suboptimal for any finite M.

When cloning pure states, the measure-and-prepare
scheme becomes optimal in the asymptotic limit M ! 1
in all known kinds of cloning. This leads to conjecture that
pure state cloning is asymptotically equivalent to quantum
state estimation [5,6], a conjecture recently proved in
Ref. [7]. Essentially, the line of proof is that a symmetric
cloning transformation with M % 1, when restricted to
single clones, must be an entanglement breaking channel,
whence it can be realized by the measure-and-prepare
scheme [8]. Such an argument, however, does not provide
any estimate of the goodness of the classical scheme for
finite number M of output copies, the situation of interest
for applications and experiments.

In this Letter we analyze the general class of quantum
channels that equally distribute quantum information to M
users, producing output states that are invariant under
permutations. This class contains cloning as a special
case. We will show that for M sufficiently large any chan-
nel of the class can be efficiently approximated by a
classical measure-and-prepare channel. Indeed, we will
show that from the point of view of single users the states

produced by the quantum and by the classical channels are
almost indistinguishable, with probability of error ap-
proaching the random guess value 1=2 at a rate at least
!=M, ! constant. More generally, for any group of k users,
the coherent and the incoherent schemes produce the same
reduced state within an accuracy k!=M. This also implies
that entanglement between the output copies asymptoti-
cally disappears at any given order k: for large M only the
k-partite entanglement with k % O!M# can survive. The
scaling M"1 is a general upper bound holding for all
physical transformations that equally distribute quantum
information among M users, including pure state cloning
and mixed state broadcasting. Of course for specific trans-
formations the actual scaling can be even faster.

The mathematical description of a quantum channel that
transforms states on the Hilbert space H in into states on
the Hilbert space H out is provided by a completely posi-
tive trace-preserving map E. Because here we focus on
channels that distribute quantum information to M users,
we have H out % H &M, with H denoting the single
user’s Hilbert space. Moreover, because we require the
information to be equally distributed among all users, for
any input state " on H in the state E!"# must be invariant
under permutations of the M output spaces. Invariance
under permutations implies that any group of k users will
receive the same state

 "!k#
out % TrM"k'E!"#(; (1)

Trn denoting partial trace over n output spaces, no matter
which ones. In particular, each single user receives the
same state "!1#

out % TrM"1'E!"#(. In the following, we will
name a channel with the above properties a channel for
symmetric distribution of information (SDI channel, for
short). Our goal will be to approximate any SDI channel E
with a classical channel ~E, corresponding to measure the
input and broadcast the measurement outcome, with each
user preparing locally the same state accordingly. Such
channels have the special form

 

~E!"# %
X
i
Tr'Pi"("&M

i ; (2)
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where the operators fPig represent the quantum measure-
ment performed on the input (Pi $ 0,

P
iPi % 1in), and "i

is the state prepared conditionally to the outcome i. The
accuracy of the approximation is given by the trace-norm
distance jj"!1#

out " ~"!1#
outjj % Trj"!1#

out " ~"!1#
outj between the

single user output states. The trace-norm distance governs
the distinguishability of states [1], namely, the minimum
error probability perr in distinguishing between two equally
probable states "1 and "2 is given by

 perr %
1

2
" 1

4
jj"1 " "2jj1; (3)

and for small distances it approaches the random guess
value perr % 1=2. In our case, a small distance jj"!1#

out "
~"!1#
outjj1 means that a single user has little chance of distin-

guishing between the outputs of the two channels E and ~E
by any measurement on his local state. In addition, to
discuss the multipartite entanglement in the state "!k#

out, we
will consider the distance jj"!k#

out " ~"!k#
outjj1. Since the state

~"!k#
out coming from ~E in Eq. (2) is separable, a small distance

means that any group of k users has little chance of
detecting entanglement.

The key idea of this Letter is to get the approximation of
SDI channels exploiting the invariance of their output
states under permutations. In fact, permutationally invari-
ant states have been thoroughly studied in the research
about quantum de Finetti theorem [9], where the goal is
to approximate any such state " on H &M with a mixture of
identically prepared states ~" % P

ipi"&M
i . In particular, as

we will see in the following, the recent techniques of
Ref. [10] provide a very useful tool to prove our results.
For simplicity, we will first start by considering the special
case of SDI channel with output states in the totally sym-
metric subspace H &M

) * H &M, which is the case, for
example, of the optimal cloning of pure states. Then, all
results will be extended to the general case of arbitrary SDI
channels.

In order to approximate channels we use the following
finite version of quantum de Finetti theorem, which is
proved with the same techniques of Ref. [10], with a slight
improvement of the bound given therein [11]:

Lemma 1: For any state " on H &M
) * H &M, con-

sider the separable state

 ~" %
Z
d p! #j ih j&M; (4)

the probability distribution p! # being given by

 p! # % Tr'! "(; ! % d)Mj ih j&M; (5)

where d denotes the normalized Haar measure over the
pure states j i 2 H , and d)M % dim!H &M

) #. Then, one
has

 jj"!k# " ~"!k#jj1 + 4sM;k; sM;k %
:
1"

!!!!!!!!!!!
d)M"k
d)M

s
; (6)

"!k# denoting the reduced state "!k# % TrM"k'"(.

Proof: The identity in the totally symmetric subspace
H &n

) * H &n can be written as

 1)
n % d)n

Z
d Pn! #; (7)

where Pn! # % j ih j&n. Using Eq. (7) with n % M" k,
we can write "!k# % dM"k

)
R
d "k! #, where "k! # %

TrM"k'"1&k & PM"k! #(. On the other hand, the reduced
state ~"!k# can be written as ~"!k# %
d)M

R
d Pk! #"k! #Pk! #. Then, the difference between

"!k# and ~"!k#, denoted by "!k#, is given by

 "!k# % d)M"k
Z
d 

"
"k! # "

d)M
d)M"k

Pk! #"k! #Pk! #
#
:

Notice that the integrand on the right-hand side has the

form A" BAB, with A! # % "k! # and B! # %!!!!!!!!!!!!!!!!!!!!
d)M=d

)
M"k

q
Pk! #. Using the relation

 A" BAB % A!1" B# ) !1" B#A" !1" B#A!1" B#
(8)

we obtain

 "!k# % d)M"k!C) Cy "D#; (9)

where

 C %
Z
d A! #'1" B! #(; (10)

 D %
Z
d '1" B! #(A! #'1" B! #(: (11)

The operator C is easily calculated using the relation

 

Z
d "k! #Pk! # %

Z
d TrM"k'"PM! #( %

TrM"k'"(
d)M

% "!k#

d)M
;

which follows from Eq. (7) with n % M. In this way we
obtain C % sM;k=d)M"k"

!k#. Because C is nonnegative, we
have jjCjj1 % Tr'C( % sM;k=d)M"k. Moreover, due to defi-
nition (11) also D is nonnegative, then we have jjDjj1 %
Tr'D( % Tr'C) Cy(, as follows by taking the trace on
both sides of Eq. (9). Thus, the norm of D is jjDjj1 %
2jjCjj1. Finally, taking the norm on both sides of Eq. (9),
and using triangular inequality we get jj"!k#jj +
4d)M"kjjCjj1 % 4sM;k, that is bound (6). !

Because the dimension of the totally symmetric sub-
space H &n

) is given by

 d)n % d) n" 1
n

$ %
;

d %: dim!H #, forM , kd the ratio d)M"k=d
)
M tends to 1"

k!d"1#
M . Therefore, Lemma 1 yields
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 jj"!k# " ~"!k#jj1 +
2!d" 1#k

M
; M , kd; (12)

i.e., the distance between "!k# and the separable state ~"!k#

vanishes as k=M.
With the above lemma, we are ready to prove the ap-

proximation theorem for SDI channels with output in the
totally symmetric subspace:

Theorem 1: Any SDI channel E with output states in
the totally symmetric subspace H &M

) * H &M can be
approximated by a classical channel

 

~E!"# %
Z
d Tr'P "(j ih j&M; (13)

where P is a quantum measurement (P $ 0 andR
d P % 1in). For large M, the accuracy of the approxi-

mation is

 jj"!k#
out " ~"!k#

outjj1 +
2!d" 1#k

M
; M , kd: (14)

Proof: Consider the channel E- in the Heisenberg
picture, defined by the relation Tr'OE!"#( % Tr'E-!O#"(
for any state " on H in and for any operator O on H out.
Because the channel E is trace preserving, E- is iden-
tity preserving, namely E-!1out# % 1in. Applying Lemma
1 to the output state "out % E!"#, we get ~"out %R
d Tr'! E!"#(j ih j&M. Because Tr'! E!"#( %

Tr'E-!! #"(, by defining P %: E-!! #, we immediately
obtain that ~"out % ~E!"#, with ~E as in Eq. (13). The opera-
tors fP g represent a quantum measurement on H in, be-
cause they are obtained by applying a completely positive
identity-preserving map to ! , which is a measurement on
H out. Finally, the bound (14) then follows from
Eq. (12). !

The above theorem proves that for large M the quantum
information distributed to a single user can be efficiently
replaced by the classical information about the measure-
ment outcome  . In fact, the single user output states of the
channels E and ~E become closer and closer, and therefore
less distinguishable, as M increases. For large M, the error
probability in distinguishing between "!1#

out and ~"!1#
out has to

satisfy the bound

 perr $
1

2
" d" 1

2M
; (15)

namely, it approaches 1=2 at rate M"1. For example, for
qubits Eq. (15) gives already with M % 10 an error proba-
bility perr $ 0:45, quite close to the error probability of a
purely random guess. More generally, the bound (14)
implies that for any group of k users there is almost no
entanglement in the state "!k#

out, because it is close to a
completely separable state. As the number of users grows,
multipartite entanglement vanishes at any finite order: only
k-partite entanglement with k % O!M# can survive.

Applying our approximation theorem to the particular
case of pure state cloning, we obtain a complete proof of its

asymptotic equivalence with state estimation. In fact, tak-
ing E as an optimal pure state cloning, the channel ~E yields
an approximation of E based on state estimation (the
measurement outcomes of P are in one to one correspon-
dence with the pure states on H ). On one hand, when
applied to a pure state j#i, the optimal cloning gives
fidelity Fclon % h#j"!1#

outj#i. On the other hand, because
the measurement P gives a possible estimation strategy,
the fidelity of the optimal estimation Fest cannot be smaller
than h#j~"!1#

outj#i. Therefore, the difference between the two
fidelities can be bounded as

 0+Fclon"Fest + jj"!1#
out" ~"!1#

outjj1 +
2!d" 1#
M

; M, d;

(16)

namely, it approaches zero at a rate 1=M. Apart from a
constant, this is the optimal rate one can obtain in a general
fashion holding for any kind of pure state cloning. In fact,
1=M is the exact rate in the case of universal cloning,
where Fclon " Fest % N!d"1#

M!N)d# (see [12] for the single-clone
fidelity). In addition, from Eq. (16) it immediately follows
that any quantum cloning map for large numbersN of input
copies is approximated by state estimation, because for
cloning one has M>N, and M is necessarily large. In this
way we proved the asymptotic equivalence between clon-
ing and state estimation for any kind of cloning (see also
the following Theorem 2 for the general case of H out !
H &M

) ), for either largeN or largeM (see open problems in
Ref. [6]). We emphasize that the M % 1 result of Ref. [7]
cannot be used to prove the large N asymptotics.

All results obtained for SDI channels with output in the
totally symmetric subspace can be easily extended to arbi-
trary SDI channels, exploiting the fact that any permuta-
tionally invariant state can be purified to a totally
symmetric one [10]:

Lemma 2: Any permutationally invariant state " on
H &M can be purified to a state j#i 2 K&M

) * K&M,
where K % H &2.

Once the state " has been purified, we can apply
Lemma 1 to the state j#i, thus approximating its reduced
states. The reduced states of " are then obtained by taking
the partial trace over the ancillae used in the purification.
This implies the following.

Lemma 3: For any permutationally invariant state "
on H &M, purified to j#i 2 K&M

) , K % H &2, consider
the separable state

 ~" %
Z
d$p!$#"!$#&M; (17)

where d$ is the normalized Haar measure over the pure
states, j$i 2 K, "!$# is the reduced state "!$# %
TrH 'j$ih$j(, and p!$# is the probability distribution
given by p!$# % Tr'!$j#ih#j(, with !$ % D)

Mj$i.
h$j&M, D)

M % dim!K&M
) #. Then, one has
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 jj"k;A " ~"k;Ajj1 + 4SM;k; SM;k %
:
1"

!!!!!!!!!!!!!
D)
M"k
D)
M

s
: (18)

Proof: Applying Lemma 1 to $ % j#ih#j, we get the
state ~$ % R

d$p!$#j$ih$j&M. The state ~" is then ob-
tained by tracing out the ancillae used in the purification,
namely, it is given by Eq. (17). Because partial traces can
only decrease the distance, the bound (18) immediately
follows from the bound (6). !

It is then immediate to obtain the following:
Theorem 2: Any SDI channel E can be approximated by

a classical channel

 

~E!"# %
Z
d$Tr'P$"("!$#&M; (19)

where P$ is a quantum measurement, namely P$ $ 0 andR
d$P$ % 1in. For large M, the accuracy of the approxi-

mation is

 jj"!k#
out " ~"!k#

outjj1 +
2!d2 " 1#k

M
; M , kd2: (20)

This theorem extends Theorem 1 and all its consequences
to the case of arbitrary SDI channels. In particular, it
proves that asymptotically the optimal cloning of mixed
states can be efficiently simulated via mixed state estima-
tion. The results of the measurement P$ are indeed in
correspondence with pure states on H &H , and, there-
fore, with mixed states on H . Accordingly, the knowledge
of the classical result $ is enough to reproduce efficiently
the output of the optimal cloning machine.

Notice the dependence on the dimension of the single
user’s Hilbert space in both Theorems 1 and 2: increasing d
makes the bounds (14) and (20) looser, leaving more room
to cloning or broadcasting of genuine quantum nature.
Rather surprisingly, instead, the efficiency of our ap-
proximations does not depend on the dimension of the
full input Hilbert space, e.g., it does not depend on the
number N of the input copies of a broadcasting channel.
No matter how large the physical system carrying the input
information, if there are many users at the output there is
no advantage of quantum over classical information pro-
cessing. Accordingly, our results can be applied to chan-
nels from H &N to H &M, even with M<N. As long as
M , kd2 any such channel can be efficiently replaced by a
classical one. In particular, this argument holds also for the
purification of quantum information [13,14]: if M is large
enough, any strategy for quantum purification can be ap-
proximated by a classical measure-and-prepare scheme.
Only for small M one can have a really quantum
purification.

In conclusion, we have considered the general class of
quantum channels that equally distribute information
amongM users, showing that for largeM any such channel
can be efficiently approximated by a classical one, where

the input system is measured and the measurement out-
come is broadcast, and each user prepares locally the same
state accordingly. The approximating channel can be re-
garded as the concatenation of a quantum-to-classical
channel (the measurement), followed by a classical-to-
quantum channel (the local preparation). Actually, the
latter channel is needed only for the sake of comparison
with the original quantum transformation to be approxi-
mated, because, due to the data processing inequality, this
additional stage can only decrease the amount of informa-
tion contained in the classical probability distribution of
measurement outcomes. Therefore, asymptotically, there is
no broadcasting of quantum information, but just an an-
nouncement of the classical information extracted by a
measurement. In synthesis, we cannot distribute more in-
formation than what we are able to read out.
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