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In any experimental science we perform 
experiments to get information on the state of an 
object system.

Knowledge on such state will allow us to predict 
the results of forthcoming experiments on the 
same (similar) object system in a similar situation. 

Since necessarily we work with only partial prior 
knowledge of both system and experimental 
apparatus, the rules for the experiment must be 
given in a probabilistic setting.

On experimental science



An experiment on a object system consists in making it 
interact with an apparatus. 

The interaction between object and apparatus produces one 
of a set of possible transformations of the object, each one 
occurring with some probability. 

Information on the state of the object system at the 
beginning of the experiment is gained from the knowledge 
of which transformation occurred, which is the outcome 
that is signaled by the apparatus.

On what is an experiment



Experiment or “action”: the action on the object system 
due to an experiment is the set                       of possible 
transformations       having overall unit probability, with 
the apparatus signaling the outcome     labeling which 

transformation actually occurred.
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charge, etc. The object of the experiment is something unknown or not precisely known
on the system, and by definition, this will be considered in the notion of state, which will
be in Def. 2. For instance, depending on the context, the charge of a particle can be a
property defining the object system—and used to design the measuring apparatus—or,
if unknown, it could be object of the experiment itself, and as such it would enter the
definition of state. Again we emphasize that here the purpose is to give only the syntactic
manual of the empirical approach, not the semantics, i. e. the specific physical context.

General axiom 2 (On what is an experiment). An experiment on a object system consists
in having it interacting with an apparatus. The interaction between object and apparatus
produces one of a set of possible transformations of the object, each one occurring with
some probability. Information on the “state” of the object system at the beginning of the
experiment is gained from the knowledge of which transformation occurred, which is the
”outcome” of the experiment signaled by the apparatus.

It is clear that both ”object” and ”apparatus” are physical systems, and the asymmetry
between object and apparatus is just asymmetry in prior knowledge, namely the apparatus
is the system of which the experimenter has more a priori information. It is then clear that
the knowledge gained on the state of the object depends on the physical object system, on
the knowledge of details of the transformation produced on the object system, and, more
generally, also on prior knowledge on the “state” itself of the system. In other words, the
experiment can be always regarded as a refinement of knowledge on the object system.

One should convince himself that the above definition of experiment is very general,
and includes all possible situations. For example, at first sight it may seem that it doesn’t
consider the case in which the object is not under the experimenter control (e. g. astro-
nomical observations), in the sense that in such case one cannot establish an interaction
with the object system. However, also in this case there is an interaction between the ob-
ject of interest (e. g. the astronomical object) and another object (e. g. the light) which
should be regarded as a part of the apparatus (i. e. telescope plus light). Such cases can
also be regarded as ”indirect experiments”, namely the experiment is performed on an
auxiliary ”object” (e. g. the light) which is supposed to have had a previous interaction
with the true object of interest, and whose state depends on properties/quantities of it.
Also, the customary case in which a ”quantity” or a ”quality” is measured without in any
way affecting the system corresponds to the case in which all states are left invariant by
the transformations corresponding to each outcome.

Performing a different experiment on the same object obviously corresponds to use a
different experimental apparatus or, at least, to change some settings of the apparatus.
Abstractly, this corresponds to change the set {Aj} of possible transformations Aj that
the system can experience. Such change could actually mean really changing the ”dy-
namics” of the transformations, but may simply mean changing only their probabilities,
or, just their labeling outcomes. Any such change actually corresponds to a change of
the experimental setup. Therefore, the set of all possible transformations {Aj} will be
identified with the choice of experimental setting—the action—and this will be formalized
by the following definition

Definition 1 (Actions and outcomes). The action on the object system due to an exper-
iment is the set A ≡ {Aj} of possible transformations Aj having overall unit probability,
with the apparatus signaling the outcome j labeling which transformation actually oc-
curred.

Thus the action is just a complete set of possible transformations describing an ex-
periment. As we can see now, in a general probabilistic framework the action A is the
”cause”, whereas the outcome j labeling the transformation Aj that actually occurred
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Actions and outcomes



State: A state     for a physical system is a rule which 
provides the probability for any possible transformation 
within an experiment, namely: 
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is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.
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No experiment: the identical transformations occurs with 
probability one
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Normalization:

States
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states      and       we can consider the state          
     which is the mixture of       with 
probability    and of        with 
probability           . We will write
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system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

for the state       corresponding to the probability rule for 
transformations  

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

6 GIACOMO MAURO D’ARIANO

is the ”effect” (the action has to be regarded as the cause, since it is the option of the
experimenter). The action can be also considered deterministic, in the sense that one
transformation Aj of the set will occur with certainty. On the other hand, the outcome—
i. e. which transformation Aj occurs— generally is not deterministic, and the particular
case of a deterministic transformation A corresponds to the singleton action A ≡ {A }.

3. States

According to General Axiom 1 by definition the knowledge of the state of a physical
system allows us to predict the results of forthcoming possible experiments on the system,
or, more generally, on another system in an alleged similar situation. According to the
General Axiom 2 then, a precise knowledge of the state of a system would allow to evaluate
the probabilities of any possible transformation of it, for any possible experiment. It
follows that the only possible definition of state is the following

Definition 2 (States). A state ω for a physical system is a rule which provides the
probability for any possible transformation, namely

(1) ω : state, ω(A ) : probability that the transformation A occurs.

We assume that the identical transformation I occurs with probability one, namely

(2) ω(I ) = 1.

This corresponds to a kind of intermediate or interaction picture, in which we don’t con-
sider the free evolution of the system: the scheme could be easily generalized to include
a free evolution, however, at the expense of simplicity. Mathematically, a state will be
a map ω from the set of physical transformations to the interval [0, 1], with the normal-
ization condition (2). Moreover, for every action A = {Aj} one has the normalization of
probabilities

(3)
X

Aj∈A
ω(Aj) = 1

for all states ω of the system. As already noticed, in order to conceive also non-disturbing
experiments, one must conceive situations in which all states are left invariant by each
transformation. At this purpose, see also Remark 4 in the following.

The fact that we necessarily work in the presence of partial knowledge about both object
and apparatus requires that the specification itself of either states and transformations
can be given either incompletely or probabilistically, entailing a convex structure on states
and an addition rule for coexistent transformations. Regarding the convex structure of
state, this is given more precisely by the rule

Rule 1 (Convex structure of states). The possible states of a physical system make a
convex set, namely for any two states ω1 and ω2 we can consider the state ω which is the
mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with probability
1− λ. We will write

(4) ω = λω1 + (1− λ)ω2, 0 ≤ λ ≤ 1,

and the state ω will correspond to the following probability rule for transformations A

(5) ω(A ) = λω1(A ) + (1− λ)ω2(A ).

Generalization to more than two states follows by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non extremal ones. As regards transformations, the
addition rule for coexistent transformations and the convex structure will be considered
in the Rules 5 and 7.

Convex structure of states

S

S

Affine dimension: adm(S)



There exists the identical transformation       which 
leaves the physical system invariant, and which for every 
transformation       satisfies the composition rule

Transformations make a monoid: the composition                            
               of two transformations        and       is itself 
a transformation. Consistency of composition of 
transformations requires associativity, namely

8 GIACOMO MAURO D’ARIANO

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.
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Now, from the definition it immediately follows that a maximally chaotic state must be
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that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,
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.
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Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule
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Monoid of transformations
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Multipartite system: a collection of independent systems

ON THE MISSING AXIOM OF QUANTUM MECHANICS 9

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A (1) ◦B(2) ◦ C (3) ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

Remark 3 (Linearity of evolution). At this point it is worth noticing that the present
definition of “state”, which logically follows from the definition of experiment, leads to a
notion of evolution as state conditioning. In this way, each transformation acts linearly on
the state space (in addition, since states are probability functionals on transformations, by
dualism (equivalence classes of) transformations are linear functionals over the probability
space). Indeed, a common misconception is that one cannot mimic Quantum Mechanics
as a mere classical probabilistic mechanics in terms of evolutions on a probability space,
because Quantum Mechanics restricts to linear evolution only, whereas classical mechanics
give evolutions which are generally nonlinear.

In the following we will make extensive use of the functional notation

(13) ωA
.
=

ω(· ◦A )
ω(A )

,

where the centered dot stands for the argument of the map. The notion of conditional
state describes the most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely
nonnegative bounded functionals ω̃ over T with 0 < ω̃(I ) < +∞. To each weight ω̃ it
corresponds the properly normalized state

(14) ω =
ω̃

ω̃(I )
.

Weights make the convex cone S̃ which is generated by the convex set of states S. We
are now in position to introduce the concept of operation.

Definition 11 (Operation). To each transformation A we can associate a linear map
OpA : S −→ S̃ which sends a state ω into the unnormalized state ω̃A

.
= OpA ω ∈ S̃

defined by the relation

(15) ω̃A (B) = ω(B ◦A ).

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations T to the interval [0, 1]. It is not strictly a state only due to lack of normalization,

Independent systems and local experiments: two 
physical systems are “independent” if on each 
system it is possible to perform “local experiments” 
for which on any joint state one has the 
commutativity of the pertaining transformations
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Rule 2. The faces of a ”complete” set of states are themselves ”complete” sets of states.

The problem is to define what does it mean ”completeness”. This can only be defined
in terms of all possible invertible dynamical maps (i. e. isometric transformations of the
set: see the following).

Definition 7 (Maximally chaotic state). The maximally chaotic state χ(S) of the convex
set S is the baricenter of the set, i. e. it can be obtained by averaging over all pure states
with the uniform measure, namely

(6) χ(S)
.
=

Z

Extr S

d ψ ψ

where Extr S denotes the set of extremal points of S, and d ψ is the measure which is
invariant under isomorphisms of S.

Definition 8 (Alternative definition of maximally chaotic state). The maximally chaotic
state χ(S) of S is the most mixed state of S, in the sense that if ζ ! ω, then ζ ∼ ω.

From the definition it follows that the maximally chaotic state is full-rank, i. e.
rank[χ(S)] =

p
dim(S) + 1.

It is then easy to prove the following theorem

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local experiments). We say that two physical
systems are independent if on each system it is possible to perform local experiments that
don’t affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

(9) A (1) ◦B(2) = B(2) ◦A (1),

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.



Local state

20 GIACOMO MAURO D’ARIANO

Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.

A dual description of the mixing in S is given by the following theorem

Theorem 5. One has the following properties for s:

(1) For ω ∈ S, ζ $→ s(ω, ζ) is a concave function on S;
(2) For ζ ∈ S, ω $→ 1

s(ω,ζ) is a convex function on S;

(3) For ω, ζ ∈ S one has

(48) s(ω, ζ) = inf{u(ζ) : u concave on S, u ≥ 0 on S, u(x) = 1}.

Theorem 6. One has

(49) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(50)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 35 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω|n of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(51) ω|n(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write ω|1 = Ω(·, I ). Notice that generally the commutativity Rule 9
doesn’t imply that the occurrence of a transformation B on system 2 doesn’t change the
probability of occurrence of any other transformation A on system 1, namely, generally

(52) A (1) ◦B(2) = B(2) ◦A (1) !=⇒ Ω(·, B)
Ω(I , B)

= Ω(·, I ).

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(53) ΩI ,B(·, I )
.
=

Ω(·, B)
Ω(I , B)

!= Ω(·, I ) ≡ ω|1.

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the acausality principle:

Rule 14 (Acausality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(54) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω|1.

The acausality of local transformations Rule 14 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

For a multipartite system we define the local state           
of the n-th system the state that gives the probability of 
any local transformation      on the n-th system with all 
other systems untouched, namely  
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)
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Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.
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Theorem 6. One has

(49) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,
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(50)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
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.
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nth

, I , . . .).
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probability of occurrence of any other transformation A on system 1, namely, generally
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In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(53) ΩI ,B(·, I )
.
=

Ω(·, B)
Ω(I , B)
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Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the acausality principle:

Rule 14 (Acausality of local transformations). Any local action on a system is equivalent
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(54) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω|1.
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Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.
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couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local transformations). We say that two physical
systems are independent if on each system it is possible to perform local transformations
that don’t affect the other system. This can be expressed synthetically with the commuta-
tivity of local transformations

(9) A1 ◦B2 = B2 ◦A1,

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A1 ◦B2 ◦ C3 ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.
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space). Indeed, a common misconception is that one cannot mimic Quantum Mechanics
as a mere classical probabilistic mechanics in terms of evolutions on a probability space,
because Quantum Mechanics restricts to linear evolution only, whereas classical mechanics
give evolutions which are generally nonlinear.

In the following we will make extensive use of the functional notation

(13) ωA
.
=

ω(· ◦A )
ω(A )

,

where the centered dot stands for the argument of the map. The notion of conditional
state describes the most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely
nonnegative bounded functionals ω̃ over T with 0 < ω̃(I ) < +∞. To each weight ω̃ it
corresponds the properly normalized state

(14) ω =
ω̃

ω̃(I )
.

Weights make the convex cone S̃ which is generated by the convex set of states S. We
are now in position to introduce the concept of operation.

Definition 11 (Operation). To each transformation A we can associate a linear map
OpA : S −→ S̃ which sends a state ω into the unnormalized state ω̃A

.
= OpA ω ∈ S̃

defined by the relation

(15) ω̃A (B) = ω(B ◦A ).

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations T to the interval [0, 1]. It is not strictly a state only due to lack of normalization,
since 0 < ω̃A (I ) ≤ 1. The operation Op gives the conditioned state through the state-
reduction rule

(16) ωA =
ω̃A

ω(A )
≡ OpA ω

OpA ω(I )
.

The concept of conditional state naturally leads to the following category of transfor-
mations

Definition 12 (Purity of transformations). A transformation is called pure if it preserves
purity of states, namely if ωA is pure for ω pure.

In contrast we will call mixing a transformation which is not pure. We will also call
pure an action made only of pure transformations and mixing an action containing at least
a mixing transformation.

5. Dynamical and informational equivalence

From the Bayes rule, or, equivalently, from the definition of conditional state, we can
see that we can have the following different situations:

(1) there are different transformations which produce the same state change, but
generally occur with different probabilities;

(2) there are different transformations which always occur with the same probability,
but generally affect a different state change.

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.
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Notice that:

namely the occurrence of the transformation      on system 2 
generally affects the conditional state on system 1, i. e. 
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)
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A dual description of the mixing in S is given by the following theorem

Theorem 5. One has the following properties for s:

(1) For ω ∈ S, ζ "→ s(ω, ζ) is a concave function on S;
(2) For ζ ∈ S, ω "→ 1

s(ω,ζ) is a convex function on S;

(3) For ω, ζ ∈ S one has

(43) s(ω, ζ) = inf{u(ζ) : u concave on S, u ≥ 0 on S, u(x) = 1}.

Theorem 6. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.
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greater than unit)

11. Local state

Definition 34 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write ω(1)(A ) = Ω(A , I ). Notice that generally the commutativity
Rule 9 doesn’t imply that the occurrence of a transformation B on system 2 doesn’t
change the probability of occurrence of any other transformation A on system 1, namely,
generally

(47) A (1) ◦B(2) = B(2) ◦A (1) (=⇒ Ω(·, B)
Ω(I , B)

= Ω(·, I ).

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB(2)(·, I )
.
=

Ω(·, B)
Ω(I , B)

(= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 14 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 14 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.
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Example 2. (1) s(ω, ζ) = 0 for ω !≺ ζ
(2) s(ω, ζ) = 0 for ζ pure and ζ != ω;
(3) a(ω, ζ) = 0 for ζ != ω, if either ζ or ω is pure.

A dual description of the mixing in S is given by the following theorem

Theorem 5. One has the following properties for s:

(1) For ω ∈ S, ζ $→ s(ω, ζ) is a concave function on S;
(2) For ζ ∈ S, ω $→ 1

s(ω,ζ) is a convex function on S;

(3) For ω, ζ ∈ S one has

(48) s(ω, ζ) = inf{u(ζ) : u concave on S, u ≥ 0 on S, u(x) = 1}.

Theorem 6. One has

(49) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(50)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 35 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω|n of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(51) ω|n(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write ω|1 = Ω(·, I ). Notice that generally the commutativity Rule 9
doesn’t imply that the occurrence of a transformation B on system 2 doesn’t change the
probability of occurrence of any other transformation A on system 1, namely, generally

(52) A (1) ◦B(2) = B(2) ◦A (1) !=⇒ Ω(·, B)
Ω(I , B)

= Ω(·, I ).

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(53) ΩI ,B(·, I )
.
=

Ω(·, B)
Ω(I , B)

!= Ω(·, I ) ≡ ω|1.

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the acausality principle:

Rule 14 (Acausality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(54) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω|1.

The acausality of local transformations Rule 14 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Therefore, in order to guarantee acausality of local actions we 
need to require that any local action on a system is equivalent 
to the identity transformation on another independent 
system:
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• there are different transformations which 
produce the same state change, but generally 
occur with different probabilities

• there are different transformations which 
always occur with the same probability, but 
generally affect a different state change

Dynamical and informational equivalence

From the definition of conditional state we have:



Dynamical and informational equivalence

Dynamical equivalence of transformations: two 
transformations      and      are dynamically 
equivalent if
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

ON THE MISSING AXIOM OF QUANTUM MECHANICS 11

that introduced by Ludwig [12] for the ”effects”. This notion is also related to that of
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to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(19) ∀ω ∈ S ω(A1 + A2) = ω(A1) + ω(A2),

whereas the state conditioning is given by

(20) ∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1 + A2)
ωA1 +

ω(A2)
ω(A1 + A2)

ωA2 .

Notice that the two rules in Eqs. (19) and (20) completely specify the transformation
A1 +A2, both informationally and dynamically (see also Section 5). Eq. (20) can be more
easily restated in terms of operations as follows:

(21) ∀ω ∈ S OpA1+A2
ω = OpA1

ω + OpA2
ω.

Addition of compatible transformations is the core for the description of partial knowledge
on the experimental apparatus. Notice also that the same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

From the above definition we can see that the equivalent of quantum unitary transfor-
mations could be defined in terms of indecomposable isometric transformations.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
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One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
action of the form A = {pjI }, it would provide no information on the state ω of the
object, since by definition the probabilities of the outcomes will be independent on ω,
because ω(pjI ) = pj . Therefore, a ”classical” experiment makes sense only for an action
A = {Aj} made of non identical transformations, but with the set of states restricted to
be all invariant under A.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations). The following quantity

(22) ||A || = sup
ω∈S

ω(A ),

is a norm on the set of transformations. In terms of such norm all transformations are
contractions.
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
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equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
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Remark 5 (Duality between the convex sets of states and of propensities). From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities T are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

(26) l[A ](ω)
.
= ω(A ).

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a, b, c, . . ., or l1, l2, . . .. Finally, notice that the notion
of coexistence (informational compatibility) extends naturally to propensities.

Remark 6 (Dual cone notation). We can write the propensity linear functionals on S
with the equivalent pairing notations

(27) lA (ω)
.
= ω(A ) ≡ (A |ω).

Definition 18 (Generalized observable). We call generalized observable a set of propen-
sities L = {li} which is informationally equivalent to an action L ∈ A, namely such that
there exists an action A = {Aj} for of which one has li ∈ Aj.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.P
i li = 1.

Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that

(28) l =
X

i

ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has

(29) ω(A ) =
X

i

ci(lA )li(ω).
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Definition 19 (Informationally complete generalized observable). A generalized observ-
able L = {li} is informationally complete if each propensity can be written as a linear
combination of the of elements of L, namely for each propensity l there exist coefficients
ci(l) such that
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ci(l)li.

Clearly, using an informationally complete generalized observable one can reconstruct
any state ω from just the probabilities li(ω), since one has
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X

i
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Rule 9 (Partial ordering between propensities). For two propensities l1, l2 ∈ P we write
l1 ≤ l2 when l1(ω) ≤ l2(ω) ∀ω ∈ S.

In Ref. [6] the present partial ordering is interpreted saying that l2 is more sensitive
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Rule 11 (Axiom V1b of Ref.[6]). For each propensity there is always another one such
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′).

Introducing the notion of face generated by an ensemble C(ω), H. Neumann [7] also
considers the following axioms

Rule 12 (Axiom V2 of Ref. [7]). If C(ω2) ⊂ C(ω1) there is a propensity l with ω2 ∈ K0(l),
but ω1 (∈ K0(l)

Rule 13 (Axiom V3 of Ref. [7]). If C(ω1) ⊂ C(ω3) ⊂ C( 1
2ω1 + 1

2ω2) and C(ω2) and
C(ω3) are strictly separated, then C(ω1) = C(ω3)
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Figure 5. Preparability of transformations. Illustration of Eq. (9).

14. Affine-space notation

For the following we will fix a minimal informationally complete observable, denoted
by {nj}, in terms of which we can expand (in a unique way) any propensity as follows

(66) lA =
X

j

mj(A )nj .

It will turn out to be convenient to replace one element of the informationally complete
observable {nj} with the normalization functional n0 defined as

(67) n0(ω̃) = ω̃(I ), ∀ω̃ ∈ S̃,

[n0(ω) = 1 for normalized states ω]. We will then use the Minkowskian notation

(68) n
.
= (n0, n), mn

.
=

X

j

mjnj = m · n + m0n0.

In the following we will also denote q
.
= m0. Therefore, for any propensity A , we will

write

(69) lA (ω) = m(A )n(ω) ≡ m(A ) · n(ω) + q(A ).

Clearly one can extend the convex set of propensities P to the complexification CP of
the underlying affine space, by keeping the coefficients mj of the expansion as complex,
namely a generic element l ∈ CP will be given by

(70) l =
X

j

mjnj , mj ∈ C.

Notice that n(ω) gives a complete description of the state ω, since for any transformation
A one can write

(71) ω(A ) = m(A ) · n(ω) + q(A ).

On the other hand, by denoting with X j and lj the propensity such that [m(X j)]l = δjl

we have

(72) nj(ω) = lX j
(ω)

.
= lj(ω).

Notice that X 0 ≡ I . We will call n(ω) the Bloch vector representing the state ω. The
Bloch representation is faithful (i. e. one-to-one), since the informationally complete
observable {lj} is minimal, namely the functionals lj are linearly independent.

We now recover the linear transformation describing conditioning. The conditioning
is given by the operation. More precisely, the conditioning of the state ω given that the
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transformation A occurred is given by the unnormalized state OpA ω ≡ ω̃A , and, more
explicitely

(73) OpA ω(B) ≡ ω̃A (B) = ω(B ◦A ) = ω(B ◦A ) ≡ lB(ω̃A )

From linearity of transformations (see remark 4) one can introduce a matrix {Mjl(A )},
and write

(74) ω(X j ◦A ) =
X

l

Mjl(A )ll(ω) + Mj0(A ),

and, in particular,

(75) ω(X0 ◦A ) ≡ ω(A ) =
X

l

M0l(A )ll(ω) + M00(A ) ≡ m(A ) · n(ω) + q(A ),

from which we derive the identities

(76) M0l(A ) ≡ [m(A )]l, M00(A ) ≡ q(A ).

The real matrices Mjl(A ) are a representation of the (real) Banach algebra of transfor-
mations. The first row of the matrix is a representation of the propensity A (see Fig.
6).

In the Bloch-vector notation, one has

nj(ω̃A ) =lX j
(ω̃A ) = ω(Xj ◦A ),

n0(ω̃A ) =lX 0(ω̃A ) = ω(A ).
(77)

n(ω̃A ) =M (A )n(ω) + k(A ), n0(ω̃A ) = m(A ) · n(ω) + q(A )

kj(A )
.
=q(Xj ◦A ),

(78)

(79) ω̃A (B) = m(B) · n(ω̃A ) + q(B)n0(ω̃A )

The matrix representation of the transformation is synthesized in Fig. 6. Since the Bloch

Mij(A ) =

0

BBBBBBBBBBBBBBBB@

q(A ) m(A )

k(A ) M (A )

1

CCCCCCCCCCCCCCCCA

Figure 6. Matrix representation of the real algebra of transforma-
tions. The first row represents the propensity A of the transformation
A . It gives the transformation of the zero-component of the Bloch vec-
tor n0(ω̃A ) ≡ ω(A ) = m(A ) · n(ω) + q(A ), namely the probability of
the transformation. The following rows represent the affine transforma-
tion of the Bloch vector n(ω) corresponding to the quantum operation
OpA , the first column giving the translation k(A ) , and the remaining
square matrix M (A ) the linear part. Overall, the Bloch vector of the
state ω is transformed as n(OpA ω) = Mn(ω) + k(A ).

representation is faithful, then the dimension of the affine space of the Bloch vector n(ω)
is just the affine dimension adm(S) of the convex set of states S. The affine dimension of
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Therefore, summarizing we have found the following conditioning transformation

(80) n(ω) −→ n(ωA ) =
M (A )n(ω) + k(A )
m(A ) · n(ω) + q(A )

,

with the transformation occurring with probability given by

(81) p(A ; ω) = m(A ) · n(ω) + q(A ).

We will now make the following operational assumption

Postulate 1 (Local observability principle). For every composite system there exist infor-
mationally complete observables made only of local informationally complete observables.

The local observability principle is operationally crucial, since it reduces enormously the
complexity of informationally complete observations on composite systems, by guarantee-
ing that only local (although jointly executed!) experiments are sufficient for retrieving a
complete information, also any correlations between the component systems. This prin-
ciple directly implies the following upper bound for the affine dimension of a composed
system

(82) adm(S12) ≤ adm(S1) adm(S2) + adm(S1) + adm(S2).

In fact, if the number of outcomes of a minimal informationally complete observable on
S is N , the affine dimension is given by adm(S) = N − 1. Now, consider a global in-
formationally complete measurement made of two local minimal informationally complete
observable measured jointly. It has number of outcomes [adm(S1) + 1][adm(S2) + 1].
However, we are not guaranteed that the joint observable is itself minimal, whence the
bound (82) follows.

Using joint local informationally complete observable, we can built a Bloch represen-
tation of joint states and of transformations of the composed system. We introduce the
dual tensor notation n $ n with the following meaning

(83) (n $ n)ij(Φ) ≡ ni $ nj(Φ)
.
= lX i,X j

(Φ),

and with the matrix composition rule

(84) (M (A )$M (B))(n $ n)(Φ) = (M (A )n $M (A )n)(Φ).

For example, one has

Φ(X i ◦A , X j ◦B) =(M (A )n $M (B)n)ij(Φ) + (k(A ))n0 $M (B)n)ij(Φ)

+(M (A ))n $ k(B)n0)ij(Φ) + ki(A )kj(B)
(85)

where we used the identity (n0 $ n0)(Φ) = 1.
We now translate the concept of dynamically faithful state in the present Bloch rep-

resentation. If the state Φ is (dynamically) faithful, then the output state ΦA ,I (con-
ditioned that the transformation A occurred locally on the first system) is in one-to-one
correspondence with the transformation A .

!

!
Φ

A

ΦA ,I

Therefore, one can completely determine the transformation by determining the output
state. We need to determine the matrix M (A ) plus the vectors k(A ) and m(A ), plus the
parameter q(A ), namely adm(S)2 + 2adm(S) + 1 parameters. However, one parameter,
say q(A ) is determined by the overall probability of occurrence of A on the state Φ, from
which the conditioned state is independent. Therefore, in order to have a joint faithful
state we need to have at least adm(S)[adm(S) + 2] independent parameters for the joint
state, namely we have the lower bound for the affine dimension of the joint system

(86) adm(S×2) ≥ adm(S)[adm(S) + 2].
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Conditioning: 
fractional affine 
transformation



Principle of local observability

For every composite system there exist
informationally complete observables made only 

of local informationally complete observables.

upper bound for the affine dimension of 
composite systems
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Faithful states

Dynamically faithful state: we say that a state       of a 
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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ΦA ,I ↔ A

lower bound for the affine dimension of a system 
composed of two identical systems
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Therefore, summarizing we have found the following conditioning transformation

(80) n(ω) −→ n(ωA ) =
M (A )n(ω) + k(A )
m(A ) · n(ω) + q(A )

,

with the transformation occurring with probability given by

(81) p(A ; ω) = m(A ) · n(ω) + q(A ).

We will now make the following operational assumption

Postulate 1 (Local observability principle). For every composite system there exist infor-
mationally complete observables made only of local informationally complete observables.

The local observability principle is operationally crucial, since it reduces enormously the
complexity of informationally complete observations on composite systems, by guarantee-
ing that only local (although jointly executed!) experiments are sufficient for retrieving a
complete information, also any correlations between the component systems. This prin-
ciple directly implies the following upper bound for the affine dimension of a composed
system

(82) adm(S12) ≤ adm(S1) adm(S2) + adm(S1) + adm(S2).

In fact, if the number of outcomes of a minimal informationally complete observable on
S is N , the affine dimension is given by adm(S) = N − 1. Now, consider a global in-
formationally complete measurement made of two local minimal informationally complete
observable measured jointly. It has number of outcomes [adm(S1) + 1][adm(S2) + 1].
However, we are not guaranteed that the joint observable is itself minimal, whence the
bound (82) follows.

Using joint local informationally complete observable, we can built a Bloch represen-
tation of joint states and of transformations of the composed system. We introduce the
dual tensor notation n $ n with the following meaning

(83) (n $ n)ij(Φ) ≡ ni $ nj(Φ)
.
= lX i,X j

(Φ),

and with the matrix composition rule

(84) (M (A )$M (B))(n $ n)(Φ) = (M (A )n $M (A )n)(Φ).

For example, one has

Φ(X i ◦A , X j ◦B) =(M (A )n $M (B)n)ij(Φ) + (k(A ))n0 $M (B)n)ij(Φ)

+(M (A ))n $ k(B)n0)ij(Φ) + ki(A )kj(B)
(85)

where we used the identity (n0 $ n0)(Φ) = 1.
We now translate the concept of dynamically faithful state in the present Bloch rep-

resentation. If the state Φ is (dynamically) faithful, then the output state ΦA ,I (con-
ditioned that the transformation A occurred locally on the first system) is in one-to-one
correspondence with the transformation A .

!

!
Φ

A

ΦA ,I

Therefore, one can completely determine the transformation by determining the output
state. We need to determine the matrix M (A ) plus the vectors k(A ) and m(A ), plus the
parameter q(A ), namely adm(S)2 + 2adm(S) + 1 parameters. However, one parameter,
say q(A ) is determined by the overall probability of occurrence of A on the state Φ, from
which the conditioned state is independent. Therefore, in order to have a joint faithful
state we need to have at least adm(S)[adm(S) + 2] independent parameters for the joint
state, namely we have the lower bound for the affine dimension of the joint system

(86) adm(S×2) ≥ adm(S)[adm(S) + 2].
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If we put the two bounds (82) and (86) together, for a bipartite system made of two
identical systems we obtain

(87) adm(S×2) = adm(S)[adm(S) + 2].

The Block representation can be obtained experimentally by performing a joint informa-
tionally complete measurement on both systems at the output, and then:

(1) determining the probability of occurrence of the transformation A on the state
Φ, which is given by

(88) Φ(A , I ) = Φ(X 0 ◦A , X 0) = (m(A ) · n " n0)(Φ) + q(A );

(2) determining the following probabilities

Φ(X j ◦A , X k) =
[(M (A )n)j " nk](Φ) + kj(A )(n0 " nk)(Φ)

Φ(A , I )
,

j = 1, . . . adm(S),
k = 0, 1, . . . adm(S),

Φ(X 0 ◦A , X j) =(m(A ) · n " nj)(Φ) + q(A ), j = 1, . . . adm(S);

(89)

(3) invert the above equations in terms of M (A ), k(A ), m(A ), and q(A ).

15. Corresponding concepts in Quantum Mechanics

The correspondence between this linear notation and the convex-set one is given in
Table 1, along with the corresponding quantum mechanical quantities. For example, in
Quantum Mechanics the pairing would be given by

(90) (A |!) ≡ 〈〈I|
X

n

An ⊗A∗
n|ρ〉〉.

Appendix A. Structure of quantum state spaces and their dynamical maps

Up to now we have investigated the structure of a generic state space S in abstract, and
given general rules for a syntactic manual for a logic approach to the ”experiment”. We
now are interested in investigating the general features of the specific case of quantum state
spaces, seeking the missing physical axiom for quantum mechanics. One can achieve an
explicit representation of the convex set of quantum states by generalizing the construction
of the Bloch sphere. For such purpose it is sufficient to have an orthonormal set {Hj} of
Hermitian traceless operators that span the whole linear space of operators on the Hilbert
space H of the quantum system. For simplicity we consider finite dimensional Hilbert
spaces and denote by d = dim(H) < ∞. An explicit construction of such a basis is given
in Section B.

Let’s summarize all known facts about the structure of quantum state spaces. The state
space is embedded in a d2 − 1 dimensional Euclidean space, equipped with an antisym-
metric external-product × and a symmetric one #, called ”star product”. It is contained
within a d2 − 1 dimensional hypersphere of radius conventionally fixed to

√
d− 1, with

all extremal points (the pure states) lying on its surface. In terms of the star product,
these are given by all points satisfying the additional identity n # n = (d − 2)n. The
convex set is not the full sphere, since there are rotations which are not admissible, and
that will bring some point of the convex outside of its boundary. A subgroup of rotations
corresponds to the unitary transformations, which act transitively on the set of extremal
points, and therefore satisfy the identity Rn # Rn = (d − 2)Rn. Therefore, pure states
are connected each other via a Lie group of rotations, even though the convex set is not
rotationally invariant (an idea of the resulting shape can be obtained from the three di-
mensional sections of the two-qubit convex in Fig. 8. There are also admissible rotations
which correspond to positive non-unitary maps, which simply map the Hermitian traceless
orthonormal basis {Hj} into another one (according to Ref. [1] the admissible rotations

dim(H ⊗ H)2 − 1 = (dim(H)2 − 1)(dim(H)2 + 1)

dim(H ⊗ H) = dim(H)2

+ faithful states



Second dimensionality identity: the Hilbert space

For any bipartite system there exists a discriminating 
joint observable which is (minimal) informationally 
complete for one of the two components for almost all 
preparations of the other components.

Realization of  informationally complete observables
 from discriminating observables

adm(S) + 1 ≥ idm(S×2)

adm(S) = idm(S)2 − 1 !!



There exists pure faithful states   

Conjectured possible axioms



There exists a joint bipartite state    , a joint bipartite 
discriminating observable                   and a set of 
deterministic indecomposable transformations  
by which one can teleport all states     as follows

Conjectured possible axioms

ON THE MISSING AXIOM OF QUANTUM MECHANICS 21

Definition 36 (Preparationally faithful state). We will call a state Φ of a bipartite system
preparationally faithful if all states of one component can be achieved by a suitable local
transformation of the other, namely for every state ω of the first party there exists a local
transformation Tω of the other party for which the conditioned local state coincides with
ω, namely

(58) ∀ω ∈ S ∃Tω :
Φ(Tω, ·)

Φ(Tω, I )
≡ ω.

13. In search for an operational axiom

In the following we list some possible candidates of operational axiom to be substituted
to the superposition principle, namely from which we can extract the quantum convex sets
of states from the set of all possible convex sets of states those. In the following we will
call a convex set of states S complete quantum convex of states (CQCS or complete QCS)
when it coincides with a complete convex set of quantum states on a given Hilbert space.
For example, the Bloch sphere is a CQCS, whereas the unit disk is a QCS, but it is not
complete. For n > 3 the n-dimensional hypersphere is not a QCS. Similarly, a tetrahedron
is a QCS, but is not complete. Notice that the metric is relevant, i. e. an ellipsoid is not
equivalent to a sphere, since the antipodal states do not have fixed unit distance.

Conjecture 1 (Restriction). For any state ω ∈ S of a CQCS S also the convex set S⊥ω
is a CQCS.

Conjecture 2 (Dynamic calibrability). For any bipartite system there exists a pure joint
state that is dynamically faithful for one of the two systems.

We also conjecture that as a consequence such state is also informationally faithful and
preparationally faithful. Or else, we conjecture

Conjecture 3 (Informational calibrability). For any bipartite system there exists a pure
joint state that is informationally faithful for one of the two systems.

From one the above calibrability conjecture the aim is to prove the following

Conjecture 4 (Dimensionality of composite systems). The informational dimensionality
of a composite system is the product of their informational dimensionalities.

The last result should follow via the equivalence of the dimensionality of the convex of
propensities and that of states.

Conjecture 5 (Informationally complete observables). On any bipartite system there
exists an observable which is informationally complete for one of the components for almost
all preparations of the other component.

Conjecture 6 (Teleportation). There exists joint bipartite states Φ, joint bipartite actions

A = {A (1,2)
j } and sets of deterministic indecomposable transformations {Uj} by which one

can teleport all states as follows

(59)
ω(1)Φ(2,3)(A (1,2)

j , ·U (3)
j )

ω(1)Φ(2,3)(A (1,2)
j , I )

= ω(3).

Conjecture 7 (Preparability of transformations). It is possible to achieve (probabilisti-
cally) any dynamical equivalence class of transformations using only a fixed action A =
{A (1,2), . . .} for a fixed outcome and a fixed partite state Φ, as follows

(60) ∃A = {A (1,2), . . .} :
ω(1)Φ(2,3)

B (A (1,2), ·)
ω(1)Φ(2,3)

B (A (1,2), I )
= ω(3)

B .
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when it coincides with a complete convex set of quantum states on a given Hilbert space.
For example, the Bloch sphere is a CQCS, whereas the unit disk is a QCS, but it is not
complete. For n > 3 the n-dimensional hypersphere is not a QCS. Similarly, a tetrahedron
is a QCS, but is not complete. Notice that the metric is relevant, i. e. an ellipsoid is not
equivalent to a sphere, since the antipodal states do not have fixed unit distance.

Conjecture 1 (Restriction). For any state ω ∈ S of a CQCS S also the convex set S⊥ω
is a CQCS.

Conjecture 2 (Dynamic calibrability). For any bipartite system there exists a pure joint
state that is dynamically faithful for one of the two systems.

We also conjecture that as a consequence such state is also informationally faithful and
preparationally faithful. Or else, we conjecture

Conjecture 3 (Informational calibrability). For any bipartite system there exists a pure
joint state that is informationally faithful for one of the two systems.

From one the above calibrability conjecture the aim is to prove the following

Conjecture 4 (Dimensionality of composite systems). The informational dimensionality
of a composite system is the product of their informational dimensionalities.

The last result should follow via the equivalence of the dimensionality of the convex of
propensities and that of states.

Conjecture 5 (Informationally complete observables). On any bipartite system there
exists an observable which is informationally complete for one of the components for almost
all preparations of the other component.

Conjecture 6 (Teleportation). There exist a joint bipartite state Φ, a joint bipartite
(discriminating) observable L = {lj} and a set of deterministic indecomposable transfor-
mations {Uj} by which one can teleport all states as follows
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ω(1)Φ(2,3)(l(1,2)

j , ·U (3)
j )

ω(1)Φ(2,3)(l(1,2)
j , I )

= ω(3),

Conjecture 7 (Preparability of transformations). It is possible to achieve (probabilisti-
cally) any dynamical equivalence class of transformations using only a fixed action A =
{A (1,2), . . .} for a fixed outcome and a fixed partite state Φ, as follows

(60) ∃A = {A (1,2), . . .} :
ω(1)Φ(2,3)

B (A (1,2), ·)
ω(1)Φ(2,3)

B (A (1,2), I )
= ω(3)

B .
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From one the above calibrability/preparability conjectures the aim would be to prove
something as follows

Conjecture 5 (Dimensionality of composite systems). The informational dimensionality
of a composite system is the product of their informational dimensionalities.

This should follow via the equivalence of the dimensionality of the convex cone of
transformations/propensities and that of unnormalized states.

Another assertion that is certainly true in the quantum case is

Conjecture 6 (Informationally complete discriminating observables). On any bipartite
system there exists a discriminating observable that is informationally complete for one of
the components for almost all preparations of the other component.

The above discriminating observable are just the so-called Bell measurements. Another
candidate for an operational axiom could be the possibility of achieving teleportation of
states

Conjecture 7 (Teleportation). There exist a joint bipartite state Φ, a joint bipartite
(discriminating) observable L = {lj} and a set of deterministic indecomposable transfor-
mations {Uj} by which one can teleport all states as follows

(64)
(ωΦ)(lj , ·Uj)
(ωΦ)(lj , I )

˛̨
˛̨
3

= ω.

lj Uj

ω Φ

ω

1 2 3

!"

!

!

Figure 4. Teleportation: illustration of Eq. (64).

Conjecture 8 (Preparability of transformations). It is possible to achieve probabilistically
the quantum operation of any transformation B by achieving (probabilistically) a fixed
bipartite transformation A (from a given action), and using a bipartite state T , as follows

(65) ∃A : ∀T ∈ T ∃T ∈ S×2 : OpA ,I (ωT )
˛̨
3

= OpT ω.

As working hypothesis I would like to consider the following combined axioms

Conjecture 9 (The minimal “lab”). On any bipartite system there exists:

a) a discriminating observable that is informationally complete for one of the com-
ponents for almost all preparations of the other component.

b) a pure joint state which, for the same component system in (a) is: dynamically,
informationally, and preparationally faithful.

Another working hypothesis could be that obtained by combining Conjectures 7 and 8,
but I think that Conjecture 9 represents the axiom of the most genuine operational/epistemic
nature.
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If we put the two bounds (82) and (86) together, for a bipartite system made of two
identical systems we obtain

(87) adm(S×2) = adm(S)[adm(S) + 2].

The Block representation can be obtained experimentally by performing a joint informa-
tionally complete measurement on both systems at the output, and then:

(1) determining the probability of occurrence of the transformation A on the state
Φ, which is given by

(88) Φ(A , I ) = Φ(X 0 ◦A , X 0) = (m(A ) · n " n0)(Φ) + q(A );

(2) determining the following probabilities

Φ(X j ◦A , X k) =
[(M (A )n)j " nk](Φ) + kj(A )(n0 " nk)(Φ)

Φ(A , I )
,

j = 1, . . . adm(S),
k = 0, 1, . . . adm(S),

Φ(X 0 ◦A , X j) =(m(A ) · n " nj)(Φ) + q(A ), j = 1, . . . adm(S);

(89)

(3) invert the above equations in terms of M (A ), k(A ), m(A ), and q(A ).

15. Corresponding concepts in Quantum Mechanics

The correspondence between this linear notation and the convex-set one is given in
Table 1, along with the corresponding quantum mechanical quantities. For example, in
Quantum Mechanics the pairing would be given by

(90) (A |!) ≡ 〈〈I|
X

n

An ⊗A∗
n|ρ〉〉.

Appendix A. Structure of quantum state spaces and their dynamical maps

Up to now we have investigated the structure of a generic state space S in abstract, and
given general rules for a syntactic manual for a logic approach to the ”experiment”. We
now are interested in investigating the general features of the specific case of quantum state
spaces, seeking the missing physical axiom for quantum mechanics. One can achieve an
explicit representation of the convex set of quantum states by generalizing the construction
of the Bloch sphere. For such purpose it is sufficient to have an orthonormal set {Hj} of
Hermitian traceless operators that span the whole linear space of operators on the Hilbert
space H of the quantum system. For simplicity we consider finite dimensional Hilbert
spaces and denote by d = dim(H) < ∞. An explicit construction of such a basis is given
in Section B.

Let’s summarize all known facts about the structure of quantum state spaces. The state
space is embedded in a d2 − 1 dimensional Euclidean space, equipped with an antisym-
metric external-product × and a symmetric one #, called ”star product”. It is contained
within a d2 − 1 dimensional hypersphere of radius conventionally fixed to

√
d− 1, with

all extremal points (the pure states) lying on its surface. In terms of the star product,
these are given by all points satisfying the additional identity n # n = (d − 2)n. The
convex set is not the full sphere, since there are rotations which are not admissible, and
that will bring some point of the convex outside of its boundary. A subgroup of rotations
corresponds to the unitary transformations, which act transitively on the set of extremal
points, and therefore satisfy the identity Rn # Rn = (d − 2)Rn. Therefore, pure states
are connected each other via a Lie group of rotations, even though the convex set is not
rotationally invariant (an idea of the resulting shape can be obtained from the three di-
mensional sections of the two-qubit convex in Fig. 8. There are also admissible rotations
which correspond to positive non-unitary maps, which simply map the Hermitian traceless
orthonormal basis {Hj} into another one (according to Ref. [1] the admissible rotations

Informationally complete from joint 
discriminating observable+ adm(S) = idm(S)2 − 1


