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On experimental science

In any experimental science we perform
experiments to get information on the state of an
object system.

Knowledge on such state will allow us to predict
the results of forthcoming experiments on the

same (similar) object system in a similar situation.

Since necessarily we work with only partial prior
knowledge of both system and experimental
apparatus, the rules for the experiment must be
given in a probabilistic setting.



On what is an experiment

An experiment on a object system consists in making it
interact with an apparatus.

The interaction between object and apparatus produces one
of a set of possible transformations of the object, each one
occurring with some probability.

Information on the state of the object system at the
beginning of the experiment is gained from the knowledge
of which transformation occurred, which is the outcome
that is signaled by the apparatus.



Actions and outcomes

Experiment or “action”: the actlon on the object system
due to an experiment is the set A = {.o7; } of possible
transformations Jij naving overall unit probability, with
the apparatus signaling the outcome ] labeling which
transformation actually occurred.




States

State: A state w for a physical system is a rule which

provides the probability for any possible transformation
within an experiment, namely:

=

w : state, w() : probability that the transformation &/ occurs

No experiment: the identical transformations occurs with

robabilit
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Normalization: Z el Y =71
;ij cA



Convex structure of states

The possible states of a physical system
make a convex set{©, namely for any two
states wWiand W2 we can consider the state
W which is the mixture of w1 with
probability A and of W2 with

probabilityl — A. We will write

w=Axi1+(1=-ANwas, 0<A<1

for the state (W corresponding to the probability rule for
transformations .2¢

() = w1 () + (1 — Nwa ()

Affine dimension: adm(6)




Monoid of transformations

Transformations make a monoid: the composition

& o B of two transformations .7 and 24 is itself

a trans
transfo

'ormation. Consistency of composition of

rmations requires associativity, namely

Co(HBod)=(oRB)o

There exists the identical transformation .# which
leaves the physical system invariant, and which for every
transformation .27 satisfies the composition rule

T ool — ol o9 — of



Independent systems and local transtormations

Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on any joint state one has the
commutativity of the pertaining transformations
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Multipartite system: a collection of independent systems



[L.ocal state

For a multipartite system we define the local state w ' n
of the n-th system the state that gives the probability of
any local transformation &7on the n-th system with all
other systems untouched, namely

G ldy=0te 7 o #



Conditional state

When composing two transformations &Zand % the
probability that Zoccurs conditioned that &7
happened before is given by the Bayes rule

w(%PB o o)
w()
Conditional state: the conditional state (v ,sgives the

p(B|) =

probability that a transformation 24 occurs on the
physical system in the statewafter the transformation
¢ occurred, namely




Acausality

Notice that:

(1) (B oy (1) -, B)
2 oB) B o
namelv the occurrence of the transformation &4 on svstem 2

y y

generally affects the conditional state on system 1, i. e.

U a(,#) = o2 # () =l

Therefore, in order to guarantee acausality of local actions we

need to require that any local action on a system is equivalent

to the identity transformation on another independent
system:

VA Z Q(-, ;) = Q(-, F) = w1

&ijEA



Dynamical and informational equivalence

From the definition of conditional state we have:

e there are different transformations which
produce the same state change, but generally
occur with different probabilities

* there are different transformations which
always occur with the same probability, but
generally affect a different state change



Dynamical and informational equivalence

Dynamical equivalence of transformations: two
transformations 27 and & are dynamically
equivalent if

Weoy — Wz Vw € 6

Informational equivalence of transformations: two
transformations &/and % are informationally
equivalent if

G =NE Ve S



Informational compatibility

Two transformations .27 and are informationally
compatible (or coexistent) if for every state w one has

w()+w(PB) <1
For any two coexistent transformations &/jand % we define the
transformation &/ = 7] + .o/ as the transformation

corresponding to the event e = {1,2} namely the apparatus

signals that either @7 or @/ 0ccurred, but doesn’t specify which
one:

Yw € 6 w(sz/l —+ JZ/Q) = w(dl) -+ W(%)
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Informational compatibility

Multiplication by a scalar: for each transformation.o?

t
t

ne transformation \.2Z for 0 < X\ < 1 is defined as the

-ansformation which is dynamically equivalent to.o?

but occurs with probability w(Ae) = Aw ()

+

Convex structure for transformations and actions

norm on transformation and approximability criterion

Banach algebra structure for transformations



Effect

We call effect an informational equivalence class |
of transformations 27

duality

effects as positive linear [ functionals over states:

l[d] (w) - w(sz%)

Convex structure for effects



Observable

Observable: a set of effects L. = {I;} which is
informationally equivalent to an action A, namely such
that there exists an action A = {&7;} for which one has

l; € | ;| V]

Perfectly discriminable states {w;}: there exists an
observable I. = {I;} such that




Informationally complete observable

Informationally complete observable: an observable

= {I;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients c¢;(l) such that




Block representation

[ Z m;()n; g (w)

Conditioning;:
fractional affine
transformation

n(w) — n(wey)




Principle of local observability

For every composite system there exist
informationally complete observables made only
of local informationally complete observables.

upper bound for the affine dimension of
composite systems

adm(Glg) < adm(Gl) adm(Gz) -+ adm(Gl) - adm(Gz)



Faithful states

Dynamically faithful state: we say that a state D ora
multipartite system is dynamically faithful for the n-th
component system if when acting on it with a local
transformation &7 the resulting conditioned state is in
1-to-1 correspondence with the dynamical
equivalence class of &7, namely the following map is
1-to-1

g, .., — |Diyn
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Existence of faithful states

o By

lower bound for the affine dimension of a system
composed of two identical systems

adm(G*?) > adm(S)[adm(&) + 2]



First dimensionality identity: the tensor product

Local observability principle + faithful states

dimension of a system composed of two identical
systems

adm(6*?) = adm(6)[adm(S) + 2]

dim(H ® H)? — 1 = (dim(H)? — 1)(dim(H)? + 1)

dim(H ® H) = dim(H)?



Second dimensionality identity: the Hilbert space

Realization of informationally complete observables
from discriminating observables

For any bipartite system there exists a discriminating
joint observable which is (minimal) informationally
complete for one of the two components for almost all
preparations of the other components.

adm(S) + 1 > idm (&%)

adm(6) = idm(&)* — 1
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There exists pure faithful states



Conjectured possible axioms

Teleportation axiom

There exists a joint bipartite state @, a joint bipartite
discriminating observable . = {l; }and a set of
deterministic indecomposable transtormations 1 }
by which one can teleport all states W as follows

(w®)(ly, %)
(w®)(l5,-7) &




Summary

effect

observable
[discriminating}

observable

‘informationally)
complete

\_ observable e,

, informational
experiment state :
equivalence
+
independent systems local state
+
B conditional dynamical
ayes rule :
state equivalence
+
Local observability
+ |adm(6><2) = adm(&)[adm(6) + 2]|
Faithful state

Bloch representation +
affine transformations

Informationally complete from joint

T discriminating observable

adm(&) = idm(6)? — 1




