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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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States are functionals for effects
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Paring notation:

p € St(A),a € Eff(A), (P

States are functionals for effects

States are separating for effects (Wi, 5, By) |BELL (D, 7, 1, 60 Yy) )
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Effects are functionals on states

Effects are separating for states
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Quantum Theory

{00, 01} € St(A) preparation test

lag, ai} observation test

success probability of discrimination
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P, Causality
P?2. Local discriminabillity
P3. Purification

P4 |Atomicity of composition

P5. Perfect distinguishabllity
P6. Lossless Compressibility

The composition of two atomic
transformations is atomic

Complete information can be accessed
on a step-by-step basis
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P6. Lossless Compressibility

Every state that is not completely mixed (i.e.
on the boundary of the convex) can be
perfectly distinguished from some other state.

Falsifiabllity of the theory
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P6.|Lossless Compressibility

For states that are not completely mixed
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states is the convex set of states of
some other system
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the same state are connected by a reversible
transformation on the purifying system




Principles for

Consequences
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1. Existence of entangled states:
the purification of a mixed state is an entangled state;

P Causa”ty the marginal of a pure entangled state is a mixed state;
P2, Local discriminability 2. Every two normalized pure states of the same
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This Is more or less what | wanted to say

Thank you for your attention



