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Definition of the probleml

Quantum Tomography is a method for
estimating the ensemble average (O) of arbi-
trary operator of a quantum system from the
measurement of a set—quorum—of (non com-
muting) observables.

Measurements are performed, each observable
at a time, on a ensemble of equally prepared
quantum systems.

We also want the possibility of unbiasing the
estimation from instrumental noise.

The quantum tomographic method can be
extended to the estimation of the matrix form
of any "quantum operation” (the quantum
evolution in a device).

General estimation problem: “Given a set of
experimental measuring and transformation
devices, which ensemble averages can be es-
timated?” Solution: mathematical theory based on frames of
operators [look on quant-ph next months].



Homodyne Tomography'

e Balanced homodyne detection
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Figure 1: Scheme of homodyne detection.
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c=—(a+b), dzﬁ(a—b) :

e In the strong LO limit (z — o0) a balanced homodyne detector
measures the quadrature Xy of the field at any desired phase ¢
with respect to the local oscillator (LO)?

Xy = (aTew + ae_“b)

DO | —
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Homodyne Tomography'

e Quantum efficiency:

________________
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Figure 2: Equivalence of a nonideal ( < 1) detector with an ideal one preceded
by a beam splitter of transmissivity 7.
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Figure 3: Homodyne detection with nonunit quantum efficiency 7.

e Nonunit quantum efficiency n < 1 at detectors gives additional
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Homodyne Tomography'

e The first technique to reconstruct the density matrix from homo-
dyne measurements, originated from the following idea! the collec-
tion of probability distributions {p(z; @) } so.x) of the quadratures
for varying ¢ is just the Radon transform of the Wigner function
W(a,@).

ped)= [ W (@4 e, - e ™)

o

e Wigner function:

d2)\ - -
W(Oz, a) _ _604/\—04)\Tr (ﬁe)\aT_)\a) .

2

e Then, by inverting the Radon transform, one obtains the Wigner
function

wiaw = [ I [T ) explirta — a)

oy = Re(ae™).

where

e From the knowledge of W(a,@) one can recover the matrix
elements of the density operator o

(x+2'|plx —2') = / dy "YW (@ + iy, x — iy) |

— 00

2l—n—m [0 00 /
Prm = V. mnlm! /ali’?/alaj 6_(x2+x2)Hn(\/§x>Hm(\/§$/) (x|plz’) |
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Homodyne Tomography'

e Imaging and tomography
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Figure 4: Illustration of a tomography machine

t h . . . .
o A M of a two dimensional image W (o, &) is a

collection of one dimensional projections p(x;¢) at different
values of the observation angle ¢

W(a,) = / md”” / dé / "t ) exp lir(e — )]




Homodyne Tomography'

Figure 5: From: U. Leonhardt, Measuring the Quantum State of Light, Cambridge University
Press (1997)
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Homodyne Tomography'
. Limitations of the tomographic method:'

[t is impossible to obtain the Wigner function by averaging:

v = [ [ e [t

1 :
_ _ —i¢
P_,22 = 8h_}r(% Re(z n 28)2 : ay = Re(ae™) .

W (a, @) is the average over data (distributed according to
p(z; ¢), with random phase ¢) of an unbounded kernel]

e The conditions for the central limit theorem are not fulfilled.
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Figure 6: Numerical simulation of experiments for estimating the “average” of
f(z) = 1 with uniform probability p(z) = 1/2 for z € [-1,1].



History of quantum tomographyl

Pattern functio

Radon transform

Radon Transform == Pattern Functions? == Deconvolving

quantum efficiency® = Many modes* = Universal estimation °
— Group Tomography and general noise deconvolution ¢ 7 =
Max-likelihood ® = Spanning sets” ' = Theory of Frames

of Observables!!
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Homodyne Tomography'
o w bypass the evaluation of W (a, @)!

- The displacement operators D(«) = e =" for o € C are

a orthonormal basis for the operator Hilbert Schmidt space,
since Tr[DT(B)D(a)] = 76®) (o — 3). One has the expansion

H = /—TrHD (a)]D'(a) .

- Change to polar variables: a = i'kei“s:
2m +00
i / do / d]f ko HeXa)ehXo

- Take the ensemble average of both sides, and write the
ensemble average (H) as the double average of an estimator
Er(Xy; ¢) over ¢ and over the ensemble:

(= [ S Ea(Xa0).

where
1 +00 . .
Eu(x;¢) = é/ dk k Tr[He™ o)~
0
- Use the symmetry X_; = — X, and get:
dg
) = [ Lieatxson.
o T
1 o0
Ey(z;¢) = Z/ dt Tr [H cos V(X — x)]
0

1 +00 . .
Z/ dk |k| Tr[He™ o)e~ ke

0




Homodyne Tomography'
. Unbiasing noise'

- Gaussian noise from nonunit quantum efficiency I, give:

1- 77k2

[ (exp(ik X)) = exp(ikX,)e™ S

Y

- The tomographic estimation can be “unbiased”, by finding an
estimator Eg” (x; @) such that

(H) = / B, 0), .

v

where (...), denotes the experimental ensemble average, i. e.
with the noisy state T, (p).

- One has:

1 +00 3 . .
E(Xg ¢) = I {Er(Xy)} = Z/ dk \k\elS—ﬂnkQTr[He@kXﬂe—lk% .

©¢)

e Example: matrix element py,yq,: |H = |n)(n + d|

- Derivation:

I N
E|(:L’>><n+d|(:c; ¢) = Z/o dt e "Tr [\n} (n 4 d| cos V(X — :U)] =
1

:_/ dt e~ nt“[x<n—|—d‘ Z\[X¢’n>—|—CC_

= H / dte bt Z‘[”“"755/212‘1()%—(:(3

e bounded for n > n, = 3

e A more efficient algorithm uses factorization formulas [Richter,
Leonhardt] and Bernoulli convolution inversion.



Homodyne Tomography'
. Estimators:l

: ()
e The estimator E|n><n—|—d|

bounded range which does not depend on n and depends very

(2; @) of the matrix element p,14, has a

weakly on d.
e [t oscillates increasingly fast for increasing n and d.

e Hence, errors will increase versus n, d, but will remain bounded.
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Figure 7: Estimator E‘(;Z; (] (x; ¢) of the matrix element ppiq4, for n =1



Homodyne tomography'
o Estimators:'

e The estimator of p,14, has a bounded range whose amplitude

increases fast versus n, d, and 7.

e Hence, errors will increase versus n, d, and 7.
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Figure 8: Estimator E‘(;Z; ( (x; ¢) of the matrix element ppiq4, for n <1
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Homodyne tomography'
o Estimators: Statistical errors'

For n > (2n —1)/(1 —n) and n < 1 one approximately has the

variance:

773/2 L(277_1)2 1 2n+1
0-2 [pn n] ~ 64n n(1—n) (—) .
’ V(1 —n)n 2n —1

e For n =1, one has o%[p,,.,] ~ V2.




Homodyne Tomography'

° Monte Carlo simulations: Schleich—Wheeler oscillations.
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Figure 9: Tomographic reconstruction of the photon-number probability of a squeezed vacuum
({(a'a) = 1) with detection efficiency n = .8. Homodyne data are computer simulated. [Here we
averaged over 27 phases using 200 blocks of 5 x 10° data for each phase]. Experimental errors
(confidence intervals) are represented by the gray-shaded thickness of horizontal lines. Left:
unbiased reconstruction. Right: reconstruction without unbiasing.
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Figure 10: Homodyne torgographic reconstruction of the number prgbability distribution for a
squeezed state. Simulation with 10 data blocks of 260 phases with 100 measurement each (left)
100 data block of 2600 phases with 100 measurement each (right)



Homodyne Tomography'

o Measuring the density matrix elements p,,,, is not
equivalent to measure the ensemble average of any desired ob-
servable. In fact, for infinite-dimensional Hilbert spaces we need
convergence of experimental errors

= Z On.mHp m , With errors 62[H] ~ Z 52[pn,m} ‘Hn,m‘Q

n,m

If \Hn,m\Q doesn’t vanish properly, the estimation of ( H) is affected
by a|diverging error

e Analogously, we have experimental inequivalence of rep-
resentations: statistical measurement errors make different rep-
resentations of the state experimentally inequivalent.

Consider two different complete orthonormal sets {|n) } and {|A)}.
If we measure g,,,, = (n|o/m), we generally cannot obtain the
matrix element g, , = (p|o|v) from g, ,, as follows

Oy = > _(mw)(uln)onm

nm

if the |series of errors|don’t converge

&[0 = ZI (mv)(uln)*e*[onm]

, bypass the measurement of Qnm!l
e Conclusion: ’




Homodyne Tomography'
. What about non-traceclass operators?'

- The expansion in displacement operators cannot be used:

H= /—TrHD (a)]D() .

e A systematic method for finding estimators for a large class of
operators is to change the definition of scalar product [theory of
frames]. Also, by analytic methods [Richter| one can find easily
expansions of the form:

EM (X4 ¢) = 267X,

a

B (Xpi6) = 2X}— o,

- and, more generally:
s (25
8(azma” (X (b) e I : n+m ?
( n ) (\/ 2/577)

- Example of “renormalized” expansion:

H = / ¢/ At TY[HG] |F g

sy = s—1+n

1 :
Fog = o exp [2(Xy + it/2)]

d ' —ie®0tal —ie"
Gly = = /0 00 explf(1 — B)£2] == *Mal |} (0] e~ (1=0)1a




Homodyne Tomography'

e |GGeneralization to two modes:| estimators for tensor prod-

ucts factorize
B, (@1, 5 61, 62) = B (w13 61) % By (12 62) |

- By linearity extend to any operator on H®H, and find the full joint
density matrix or any ensemble average for any entangled state,
by just using local joint homodyne measurements.

e Correlations come from joint homodyne probability p(x1, x2; ¢1, ¢2)!



Homodyne Tomography'

e  Improvements:

e “Adaptive” schemes, based on non unicity of estimators
(existence of “null estimators”). Estimators are “adapted to data”
via least squares method.

e In general, choose coefficients 1 and v in order to minimize the

error:

Kz, ¢) = BV (2;0) + p- Fla; ¢) + v - F(x;6)

where

Flx; ) = {a" expli(2n + 2 + k)¢]}

° A(K}?))Q minimum =
Au=>b, Av=c,
A =FF*, b=-&A|F*, c=—&[AlF .

e The statistical error is reduced by the amount

AKM)?2 — A(EMW)?2 = —-b-A'b* —c-Ac".

e Example: H = a'a, for coherent, squeezed vacuum, and
Schrodinger-cat states.

1
E\l(x;6) = 20° = 5 + 2Relpexp(2ig)] |

+2(a'a) +1] .

noise reduction




Homodyne Tomography'

e  Improvements:

e Max-likelihood strategy (for density matrix only).
- Write the density matrix by in the Cholevsky form: p = 717

- Find the maximum of the likelihood:

N
L(7) = Z log Tr [717 T, (|2:) 6,0, (2:])] — N Tr(ri7) |

M-1 k—j — | 2
=222 ( n )nnu—n>f<kmn+j><nrxi>em¢i
k=0 j=0 |n=0

e Method biased: need truncation of Hilbert space.

e Complexity growing exponentially with the number of modes.

Figure 11: Fig. 1: Monte Carlo simulation of the tomographic reconstruction of the density
matrix using the maximum likelihood technique. Left: density matrix for a coherent state with
{(aTa) = 1; Right: squeezed vacuum with (a'a) = 0.5. Both: 100 phases with 5000 data each.
Hilbert space truncation set to Ny = 5; quantum efficiency n = 0.8



Homodyne Tomography'

e one-LO multimode homodyne tomography:

- -
- A
signal
— )
! 1o
- Multimode field, with annihilation operators ay, as, ..., @, 1

- Quadratures:

;waw:%pmaw+Awwﬂﬂmep%ymepﬂ,
A, )= e y(f)a; ,u(6) € S™.
=0

- averaging over v and 6 with probability measure:

- 0, 0
du(0,1) = n! H ;—ﬁl 6, sin?"—D+1 §l cosgl :
1=0



Homodyne Tomography'

one-LO multimode homodyne tomography:

Estimator:
n—+1 00 . .
B (X(0,9):60,9) = — / dt 7 2VEX OOy Ae~2VRX O]
: 0
2
K = Til

e Matrix element ({n;}|R|{m;}) of the joint density matrix of

modes:

(n) . _
By iy (%36, 90) =

Y 1—o(ng—my )iy R ﬁ [ NG (6)]r Y
e " ed=0tTm —iv/ KU My —
TL' 1=0 l :ul'

n

o | aretens e TT o))
(=0

- p; = max(my, ng), vy = min(my, n;).

e Probability distribution of the total number of photons

N = Z?:o azT a

n+1

/ dt e VR g L et
0

(n) . _
Epyp(2:0,9) = —

- |p) eigenvector of N for eigenvalue p.



Example 4: one-LO multimode homodyne tomography

Figure 12: Two-mode photon-number probability p(n, m) of the twin-beam state of parametric
fluorescence for average number of photons per beam 7 = [£|?/(1 — |£]?) = 5 obtained by
a Monte-Carlo simulation with random parameters cos 26, 11, and 1. On the left we have
quantum efficiency n = 1, and a sample of 10° data has been used. On the right quantum
efficiency is 7 = .9, and a sample of 5 * 10% data has been used.

Figure 13: Tomographic reconstruction of the matrix elements C,, ,,, = o(m|p(m|¥)(¥|n),|n);, of
the twin-beam state of parametric fluorescence for average number of photons per beam n = 2.
On the left we have quantum efficiency n = .9, and a sample of 10 data has been used. On
the right quantum efficiency is n = .8, and a sample of 3 x 10° data has been used.



Some experimental results'

e M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Tomo-
graphic Measurement of Joint Photon Statistics of the Twin-
Beam Quantum State, Phys. Rev. Lett. 84 2354 (2000)

e First measurement of the joint photon-number probability distri-
bution for a two-mode quantum state created by a nondegenerate
optical parametric amplifier.

- The measured distributions exhibit up to 1.9 dB of quantum
correlation between the signal and idler photon numbers, whereas
the marginal distributions are thermal as expected for parametric
fluorescence.

To scope ,f\ To boxcar

9
Cch2

BPF bo{c

KTP

Pump 40 MHz

532 nm NOPA

Filter signal LO
idler LO

Identical v Ch1
to Ch2

To scope \y To boxcar

Figure 14: A schematic of the experimental setup. NOPA, non-degenerate
optical parametric amplifier; LOs, local oscillators; PBS, polarizing beam
splitter; LPF's, low-pass filters; BPF, band-pass filter; G, electronic amplifier.
Electronics in the two channels are identical.



Some experimental results'
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Figure 15: Marginal distributions for the signal and idler beams. Theoretical
distributions for the same mean photon numbers are also shown.




Some experimental results'

o
N
o

-t FLe.

-6 -4 -2 0 2 4 6
Difference photon number (n-m)

@

0.2

-8 6 -4 -2 0 2 4 6
Difference photon number (n-m)

Figure 16: Left: Measured joint photon-number probability distributions for the
twin-beam state. Right: Difference photon number distributions corresponding
to the left graphs. Filled circles: experimental data; solid lines: theoretical
predictions; dashed lines, difference photon-number distributions for two
independent coherent states with the same total mean number of photons and
n =m. (a) 400000 samples, @ = m = 1.5, N = 10; (b) 240000 samples, 7 = 3.2,
m = 3.0, N = 18; (¢) 640000 samples, m = 4.7, m = 4.6, N = 16.



Pauli Tomography'

Pauli matrices with identity I ,05 ,0y ,0%:
orthonormal basis for the qubit operator

space:

1
H = 5{5’ -Trl[cH|+ I 'Tr|H]} .
e Tomographic estimation:

(H) =5 ¥ (Egloaa)).

@:x7y7z

3 1
E(og; a) = éTr[HO-a]O_@ +- §TT[H]

- Unbiasing noise. Example: “Pauli channel”
0<p<1):

Cp(H) = (1= p)H + SThlH]

EW ’ Tr|Hogloa + %TF[H]

i (70 0) = 5




Pauli Tomography'

e (ubit realized by polarization of single photon
states.

0, = hTh—UTU,
[ T) = [Dl0)v, [ 1) = |0)4[1)v,

T _ T
Oy:6240x026 110z ’
ity 1 .
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op =€ '1%g,e" 1%

—= (11410}, — [0)411),] = D0 -

6&%\1%\0% = 5

g

PBS A4 PBS

Figure 17: Pauli-matrix detectors for photon-polarization qubits.



Tomography of quantum operations'

e Quantum operations are the most general
state evolutions in quantum mechanics.

- The input and output states are connected via
the map

_Elp)
Te(E(p)) -
which occurs with probability Tr(E(p)) <1

e The quantum operation E is a linear, trace-
decreasing CP-map.

e Suppose that we have a quantum machine that
performs an unknown quantum operation E.
and we want to determine E experimentally.
How can we do?

e We can exploit the one-to-one correspondence
E < Rp between quantum operations on
S(H) and positive operators Rg on H ® H.

Rg =E® Iy(|I){I]) ,
E(p) = Tro[I ® pRE] ,



Notation I

& an Onm‘n> <m|
'O = > m Omn|n) (m| transposed operator
O*=>_... Onmln)(m| conjugate operator
°|v) = Zn un|n)
[v*) = > vy|n) conjugate vector

e HS(H) Hilbert space of Hilbert-Schmidt oper-
ators on H

(4, B) = TilATB],
1Al = T[T A]
e [somorphism HS(H) ~ H ® H:

A = ApmIn)®|m) = AQI|I) = IQ'A|I) |

(A|B) = Ti[ATB] = (A, B)
A® B|C)) = |ACB)) .



Tomography of quantum operations'

COMPUTER

Figure 18: General experimental scheme of the method for the tomographic
estimation of a quantum operation. Two identical quantum systems are
prepared in an entangled state |¢). One of the two systems undergoes the
quantum operation E, whereas the other is left untouched. At the output one
makes a quantum tomographic estimation, photocurrent by measuring jointly
two random observables from a quorum {X)}.

e If we consider an entangled input state |¢)) and operate only one
one side with the quantum operation, the output state is the joint
density matrix

[Yh Y] — R(¥) =EI([v){])

e The quantum operation E is in correspondence with Rg = R(v))
for ¢ = I, and for invertible v the two matrices R(I) and R(¢))
are connected as follows

R(I)= Iy " )RW)I@y™").

Hence, the quantum operation (four-index) matrix Rg can be
obtained by estimating via quantum tomography the following
output ensemble averages

(i, 3| RIDIL k) = (DGl @ [~ (k) ()] ) -



Tomography of quantum operations'
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Figure 19: Homodyne tomography of the quantum operation A corresponding
to the unitary displacement of one mode of the radiation field. Diagonal
elements A,, (shown by thin solid line on an extended abscissa range,)
with their respective error bars in gray shade, compared to the theoretical
probability (thick solid line). Similar results are obtained for all upper and lower
diagonals of the quantum operation matrix A. The reconstruction has been
achieved using an entangled state |¢)) at the input corresponding to parametric
downconversion of vacuum with mean thermal photon n and quantum efficiency
at homodyne detectors n. Top: z =1, 7 = 5, n = 0.9, and 150 blocks of 10*
data have been used. Bottom: z =1, 7 = 3, n = 0.7, and 300 blocks of 2 - 10°
data have been used. The bottom plot corresponds to the same parameters of
the experiment in Ref. M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano,
Phys. Rev. Lett. 84 2354 (2000).



Tomography of quantum operations

. Tomography of a single qubit quantum device'
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Figure 20: Experiment in progress in Roma La Sapienza, F. De Martini lab.
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Tomography in Quantum Parallell

e The tomography of quantum operation would
also be possible by scanning over a com-
plete set of orthogonal input states (such as
photon number states) along with linear su-
perpositions of two of them with £1 relative
phases. This, however, is unfeasible exper-
imentally, whereas the entangled state is ex-
perimentally feasible!

e Our method exploits the quantum parallelism
of entanglement, with a single entangled
state playing the role of a varying
input state, thus overcoming the practically
insolvable problem of availability of all possible
input states for the tomographic analysis of
the quantum operation.



Conclusions I

1. Quantum Tomography is a perfectly unbiased method for univer-
sal estimation of any ensemble average of an arbitrary quantum
system, with totally unknown state. No assumptions and approx-
imations.

2. Works with many modes/particles, either distinguishable or indis-
tinguishable.

. General method for deconvolving instrumental noise available;
Max-lik and averaging strategies available;

Error-improving adaptive methods available;

D Ut e W

. Tomography of Quantum Operations available.



